[Math] Solve the Laplace equation on an annular region

partial differential equations

Solve the Laplace equation on the annular region $$\Omega=\{r_1 < r < r_2\}$$
with boundary conditions given by $$U(r_1,\theta)=C_1,$$ $$U(r_2,\theta)=C_2.$$


$\textbf{Attempt.}$ Since the origin is excluded from the domain, we require the use of the full solution, given by
\begin{equation}
U(r,\theta)=c_0+d_0\ln(r)+\sum^{\infty}_{m=1}\Big(c_mr^m+\frac{d_m}{r^m}\Big)(a_mcos(m\theta)+b_msin(m\theta)).
\end{equation}
Now, imposing our boundary conditions gives
\begin{equation}
C_1=c_0+d_0\ln(r_1)+\sum^{\infty}_{m=1}\Big(c_mr_1^m+\frac{d_m}{r_1^m}\Big)(a_mcos(m\theta)+b_msin(m\theta)),
\end{equation}
\begin{equation}
C_2=c_0+d_0\ln(r_2)+\sum^{\infty}_{m=1}\Big(c_mr_2^m+\frac{d_m}{r_2^m}\Big)(a_mcos(m\theta)+b_msin(m\theta)).
\end{equation}
Now, since the left hand sides of each expression don't have any sine or cosine terms, we may discard the sum part of each expression giving us
\begin{equation}
C_1=c_0+d_0\ln(r_1), \tag1
\end{equation}
\begin{equation}
C_2=c_0+d_0\ln(r_2). \tag2
\end{equation}
This is just a system of equations that we will solve simultaneously. We rewrite $(1)$ and $(2)$ as
\begin{equation}
c_0=C_1-d_0\ln (r_1),
\end{equation}
\begin{equation}
c_0=C_2-d_0\ln (r_2).
\end{equation}
Then
\begin{equation}
C_1-d_0\ln(r_1)=C_2-d_0\ln(r_2) \Rightarrow C_1-C_2=d_0(\ln(r_1)-\ln(r_2)),
\end{equation}
that is
\begin{equation}
d_0=\frac{C_1-C_2}{\ln(r_1/r_2)}.
\end{equation}
Then
\begin{equation}
c_0=C_1-\frac{(C_1-C_2)\ln(r_1)}{\ln(r_1/r_2)}
\end{equation}


But it's here that I get a bit stuck as I can't seem to manage to get a succinct solution in the form $U(r,\theta)$ from here as I feel like I have way too many variables.

Thanks in advance.

Best Answer

There should be a radial solution to this $\theta$ invariant problem. The only radial solutions are of the form $A+B\ln (r)$, and a solution is found once the boundary conditions are met: $$ A+B\ln(r_1)=C_1 \\ A+B\ln(r_2)=C_2. $$ The constant $B$ is determined by $B\ln(r_2/r_1)=C_2-C_1$: $$ B = \frac{C_2-C_1}{\ln(r_2)-\ln(r_1)}. $$ Then $A$ is determined by looking at $r=r_1$ or $r=r_2$: $$ A +\frac{C_2-C_1}{\ln(r_2)-\ln(r_1)}\ln(r_1)=C_1. $$