[Math] Solve $\sec (x) + \tan (x) = 4$

trigonometry

$$\sec{x}+\tan{x}=4$$
Find $x$ for $0<x<2\pi$.

Eventually I get $$\cos x=\frac{8}{17}$$
$$x=61.9^{\circ}$$
The answer I obtained is the only answer, another respective value of $x$ in $4$-th quadrant does not solve the equation, how does this happen? I have been facing the same problem every time I solved this kind of trigonometric equation.

Best Answer

Using $t$-formula

Let $\displaystyle t=\tan \frac{x}{2}$, then $\displaystyle \cos x=\frac{1-t^2}{1+t^2}$ and $\displaystyle \tan x=\frac{2t}{1-t^2}$.

Now \begin{align*} \frac{1+t^2}{1-t^2}+\frac{2t}{1-t^2} &=4 \\ \frac{(1+t)^{2}}{1-t^2} &= 4 \\ \frac{1+t}{1-t} &= 4 \quad \quad (t\neq -1) \\ t &= \frac{3}{5} \\ \tan \frac{x}{2} &= \frac{3}{5} \\ x &=2\left( n\pi +\tan^{-1} \frac{3}{5} \right) \\ x &= 2\tan^{-1} \frac{3}{5} \quad \quad (0<x<2\pi) \end{align*}

Related Question