[Math] Solution of $y”+xy=0$

ordinary differential equationspower series

The differential equation $y''+xy=0$ is given.

Find the solution of the differential equation, using the power series method.

That's what I have tried:

We are looking for a solution of the form $y(x)= \sum_{n=0}^{\infty} a_n x^n$ with radius of convergence of the power series $R>0$.

Then:

$$y'(x)= \sum_{n=1}^{\infty} n a_n x^{n-1}= \sum_{n=0}^{\infty} (n+1) a_{n+1} x^n$$

$$y''(x)= \sum_{n=1}^{\infty} (n+1) n a_{n+1} x^{n-1}= \sum_{n=0}^{\infty} (n+2) (n+1) a_{n+2} x^n$$

Thus:

$$\sum_{n=0}^{\infty} (n+2) (n+1) a_{n+2} x^n+ x \sum_{n=0}^{\infty} a_n x^n=0 \\ \Rightarrow \sum_{n=0}^{\infty} (n+2)(n+1) a_{n+2} x^n+ \sum_{n=0}^{\infty} a_n x^{n+1}=0 \\ \Rightarrow \sum_{n=0}^{\infty} (n+2)(n+1) a_{n+2} x^n+ \sum_{n=1}^{\infty} a_{n-1} x^n=0 \\ \Rightarrow 2a_2+\sum_{n=1}^{\infty} \left[ (n+2) (n+1) a_{n+2}+ a_{n-1}\right] x^n=0$$

So it has to hold:

$$a_2=0 \\ (n+2) (n+1) a_{n+2}+a_{n-1}=0, \forall n=1,2,3, \dots$$

For $n=1$: $3 \cdot 2 \cdot a_3+ a_0=0 \Rightarrow a_3=-\frac{a_0}{6}$

For $n=2$: $4 \cdot 3 \cdot a_4+a_1=0 \Rightarrow a_4=-\frac{a_1}{12}$

For $n=3$: $5 \cdot 4 \cdot a_5+a_2=0 \Rightarrow a_5=0$

For $n=4$: $6 \cdot 5 \cdot a_6+a_3=0 \Rightarrow 30 a_6-\frac{a_0}{6}=0 \Rightarrow a_6=\frac{a_0}{6 \cdot 30}=\frac{a_0}{180}$

For $n=5$: $7 \cdot 6 \cdot a_7+ a_4=0 \Rightarrow 7 \cdot 6 \cdot a_7-\frac{a_1}{12}=0 \Rightarrow a_7=\frac{a_1}{12 \cdot 42}$

Is it right so far? If so, how could we find a general formula for the coefficients $a_n$?

EDIT: Will it be as follows:

$$a_{3k+2}=0$$

$$a_{3k}=(-1)^k \frac{a_0}{(3k)!} \prod_{i=0}^{k-1} (3i+1)$$

$$a_{3k+1}=(-1)^k \frac{a_1}{(3k+1)!} \prod_{i=0}^{k-1} (3i+2)$$

If so, then do we have to write seperately the formula for the coefficients of $x^0, x^1$, because otherwhise the sum would be from $0$ to $-1$ ?

Best Answer

Follow-up from my comment, every $a_{n+3}$ can be expressed in terms of $a_n$. $$a_{n+3} = -\frac{a_{n}}{(n+3)(n+2)}$$

Since $a_2 = 0$, all coefficients with $n = 3k + 2$ will be $0$ The rest will have to based on the initial conditions of $a_0 = y(0)$ and $a_1 = y'(0)$

For $n = 3k$ $$a_3 = -\frac{a_0}{3\cdot2}$$ $$a_6 = -\frac{a_3}{6\cdot5} = \frac{a_0}{6\cdot5\cdot3\cdot2} $$

This can be extrapolated to $$ a_{n} = \pm\frac{a_0}{n(n-1)(n-3)(n-4)\cdots\cdot6\cdot5\cdot3\cdot2} $$ Basically, the denominator is a product of all integers from $1$ to $n$, skipping every 3rd number and alternating signs. An alternate notation is $$a_{3k} = (-1)^k\frac{a_0}{(3k)!}\prod_{i=0}^{k-1} (3i+1) $$

The same can be done for $n = 3k+1$ $$a_{3k+1} = (-1)^k\frac{a_1}{(3k+1)!}\prod_{i=0}^{k-1} (3i+2)$$

Related Question