[Math] Singular homology of $\mathbb{R}P^{2}$

algebraic-topologyprojective-space

I am doing algebraic topology course and I'm trying to compute the singular homology for some spaces.
However I am stuck doing that for $\mathbb{R}P^{2}$.

Compute the singular homology of $\mathbb{R}P^{2}$ (the real projective plane).

Best Answer

View the real projective plane as the union of a disk $D^{2}$ and a Möbius strip $M$intersecting in an annulus, so that the edge of the disk goes all the way around the boundary of the Möbius strip. So when we consider $D^{2} \cap M \simeq S^{1}$, the circle "wraps around" the disk twice. Note that $\mathbb{R}P^{2}$ is a connected 2-dimensional manifold so $H_{0}(\mathbb{R}P^{2}) = \mathbb{Z}$ and $H_{n}((\mathbb{R}P^{2}) = 0$ for $n \geq 3$.

Now $M \simeq S^{1}$ and $M \cap D^{2} \simeq S^{1}$, the Mayer Vietrois sequence is

$$H_{2}(D) \oplus H_{2}(S^{1}) \longrightarrow H_{2}(\mathbb{R}P^{2})\longrightarrow H_{1}(S^{1}) \longrightarrow H_{1}(D) \oplus H_{1}(S^{1}) \longrightarrow H_{1}(\mathbb{R}P^{2}) \longrightarrow H_{0}(S^{1}) \longrightarrow H_{0}(D) \oplus H_{0}(S^{1}) \longrightarrow H_{0}(\mathbb{R}P^{2})\longrightarrow 0,$$ giving

$$0 \longrightarrow H_{2}(\mathbb{R}P^{2})\longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z} \longrightarrow H_{1}(\mathbb{R}P^{2}) \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z} \oplus \mathbb{Z} \longrightarrow \mathbb{Z} \longrightarrow 0.$$

The map including the annulus into the Möbius strip wraps twice around the circle that is a retract of the Möbius strip, so the first map $\mathbb{Z} \rightarrow \mathbb{Z}$ is given by multiplication by $2$. Hence the map is injective and $H_{2}(\mathbb{R}P^{2}) = 0$. Now the last 3 groups in the sequence form a short exact sequence, so the map $H_{1}(\mathbb{R}P^{2}) \rightarrow \mathbb{Z}$ must be the zero map as $\mathbb{Z} \rightarrow \mathbb{Z} \oplus \mathbb{Z}$ is injective. Hence we have a short exact sequence

$$ 0 \longrightarrow \mathbb{Z} \stackrel{2}{\longrightarrow} \mathbb{Z} \longrightarrow H_{1}(\mathbb{R}P^{2}) \longrightarrow 0,$$

so $H_{1}(\mathbb{R}P^{2}) = \mathbb{Z} / 2 \mathbb{Z}$.

Related Question