[Math] Singular covariance matrix

determinantlinear algebrastochastic-processes

I am looking into the process $\{X_t, t\in\mathbb{Z}\}$, $X_t=A\cos(\lambda t)+B\sin(\lambda t)$, here $\lambda\in(0,\pi)$ is fixed, $A$ and $B$ are uncorrelated random variables with $EA=EB=0$, $EA^2=EB^2=\sigma^2$.

I have found the covariance function $r(k)=\sigma^2\cos(\lambda k)$ and now I want to show that process' covariance matrix

$$\sigma^2
\begin{pmatrix}
1 & \cos(\lambda) & \cos(2\lambda) & \cdots & \cos(n\lambda) \\
\cos(\lambda) & 1 & \cos(\lambda) & \cdots & \cos((n-1)\lambda) \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\cos(n\lambda) & \cos((n-1)\lambda) & \cos((n-2)\lambda) & \cdots & 1
\end{pmatrix}
$$

is singular when $n\geq 2$. Also the relationship $X_{n+1}=2X_n\cos\lambda-X_{n-1}$, $n\geq 2$ holds, from which I get that $r(k)=\frac{r(k-1)+r(k+1)}{2\cos\lambda}$. But I can not find a fast way to show that the covariance matrix is singular neither using latter relationship nor the matrix above.

Best Answer

Let $Z = (X_0 , X_1 , \dots , X_n )^T$,

and let $$U = \left( \begin{matrix}1 & 0 \\ \cos \lambda & \sin \lambda \\ \dots & \dots \\ \cos \lambda n &\sin \lambda n \end{matrix} \right).$$

Then $$ Z = U \left( \begin{matrix} A \\ B \end{matrix} \right)$$ where $$\text{Cov} \left( \begin{matrix} A \\ B \end{matrix} \right ) = \left( \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right).$$ $EZ = 0$ and $$ \text{Cov} Z = EZZ^T = U \text{Cov} \left( \begin{matrix} A \\ B \end{matrix} \right) U^T = U\left( \begin{matrix} 1 & 0 \\ 0 & 1\\ \end{matrix} \right) U^T = UU^T.$$

Clearly, the covariance matrix of $Z$ is singular for $ n \geq 2 $ as rank of $U$ is atmost 2 as it is a $ n \times 2 $ matrix and rank of $ \text{Cov}(Z) $ is less or equal to the rank of $U$.

Related Question