Multivariable Calculus – Showing Curl of Curl of A Equals Gradient of Divergence of A Minus Laplacian of A

curldivergence-operatormultivariable-calculusvector analysisVector Fields

I have faced difficulties while trying to prove that

$$\nabla\times(\nabla\times\vec{A}) = \nabla(\nabla\cdot\vec{A})-\Delta\vec{A}$$

I don't have any clue how can I start to work with it. Any hint will be helpful.

Best Answer

For some details missing from the derivation below, see my answer to this question.

First, we write the LHS in terms of its components, using the Kronecker delta and Levi-Civita symbols. (Note: I'll drop the vector arrow on $\vec{A}$ but it's a vector)

$$[\,\nabla \times (\nabla \times A)\,]_{i} = \epsilon_{ijk}\,\partial_{j}\,(\nabla \times A)_{k} = \epsilon_{ijk}\,\partial_{j}\,(\epsilon_{krs}\,\partial_{r}\,A_{s}) $$

The $\epsilon_{krs}$ are constants, so

$$[\,\nabla \times (\nabla \times A)\,]_{i} = \epsilon_{ijk}\,\epsilon_{krs}\,\partial_{j}\,\partial_{r}\,A_{s} $$

But

$$\epsilon_{ijk}\,\epsilon_{krs} = \delta_{ir}\,\delta_{js} - \delta_{is}\,\delta_{jr} $$

so

$$[\,\nabla \times (\nabla \times A)\,]_{i} = (\delta_{ir}\,\delta_{js} - \delta_{is}\,\delta_{jr})\, \partial_{j}\,\partial_{r}\,A_{s} = \delta_{ir}\,\delta_{js}\,\partial_{j}\,\partial_{r}\,A_{s} - \delta_{is}\,\delta_{jr}\,\partial_{j}\,\partial_{r}\,A_{s} $$

Simplifying,

$$[\,\nabla \times (\nabla \times A)\,]_{i} = \partial_{j}\,\partial_{i}\,A_{j} - \partial_{j}\,\partial_{j}\,A_{i} = \partial_{i}\,(\partial_{j}\,A_{j}) - (\partial_{j}\,\partial_{j})\,A_{i} = \partial_{i}\,(\nabla \cdot A) - \nabla^2A_i $$

so

$$\nabla \times (\nabla \times A) = \nabla(\nabla \cdot A) - \nabla^2A $$

Related Question