[Math] Showing that a subset is an open subset of R2

real-analysis

Prove that the set $ U={\{(x,y) \in \mathbb R^2|y>0}\} $ is an open subset of $ \mathbb R^2 $.

John Taylor's Definition for being open:
If $U$ is an open subset of $\mathbb R^d$ we will say that $U$ is open if, for each point $x \in U$,there is an open ball centered at $x$ which is contained in $U$.

attempt at proof:
Take $ U$ as defined. We need to show $U$ is open. Let $(x,y) \in U$ be an arbitrary point. Suppose $B_r(x,y)$ is an open ball centered at $(x,y)$. We need to show that $U$ is open amounts to showing that $B_r(x,y)$ is contained in $U$.

proof idea: I was wondering if I should take $U$ and treat it as an open ball and then show that $B_r(x,y)$ is just another ball contained in $U$. I'm also thinking about using the triangle inequality to show that $||(x,y)-(x_0,y_0)||<r$.

Note: $B_r(x,y) = \{(x,y) \in \mathbb R^2:||(x,y)-(x_0,y_0)||<r \}$

Any hints or advise to help me get in the right direction would be helpful.

Best Answer

As stated in my comment, $\forall (x,y) \in U$, take $r = \frac{|y|}{2}$. Show $B_r((x,y)) \subset U$.

For $(x', y') \in B_r((x,y))$,

Then $|y'| > |y| - \frac{|y|}{2} > 0 \implies (x',y') \in U$

Related Question