[Math] Show the exact value of cosine of 144° using law of cosines.

trigonometry

Show the exact value of cosine of $144^\circ$ using the law of cosines. By this law, $\cos144^\circ=1-2\sin^2 72^\circ$. And that is equivalent to $\cos144^\circ=1-2(2\sin36^\circ\cos36^\circ)^2$. What would be the next steps to solve this?

Best Answer

I really don't see how this can be accomplished using the Law of Cosines, but here's a way that we can go about it.

Note that $$\cos 144^\circ=\cos(2\cdot 72^\circ)=1-2\sin^2(72^\circ).$$ If we can find $\sin^2(72^\circ),$ then, we will be able to find $\cos 144^\circ.$

Now, for any angle $\theta,$ we have by sum and difference formulas, double-angle formulas, and Pythagorean identity that $$\begin{align}\sin(5\theta) &= \sin(\theta+4\theta)\\ &= \sin\theta\cos4\theta+\sin4\theta\cos\theta\\ &= \sin\theta\bigl(1-2\sin^22\theta\bigr)+2\sin2\theta\cos2\theta\cos\theta\\ &= \sin\theta-2\sin^22\theta\sin\theta+2\sin2\theta\bigl(1-2\sin^2\theta\bigr)\cos\theta\\ &= \sin\theta-2(2\sin\theta\cos\theta)^2\sin\theta+2(2\sin\theta\cos\theta)\bigl(1-2\sin^2\theta\bigr)\cos\theta\\ &= \sin\theta-8\sin^3\theta\cos^2\theta+4\sin\theta\cos^2\theta-8\sin^3\theta\cos^2\theta\\ &= \sin\theta+(4\sin\theta-16\sin^3\theta)\cos^2\theta\\ &= \sin\theta+(4\sin\theta-16\sin^3\theta)(1-\sin^2\theta)\\ &= \sin\theta+4\sin\theta-4\sin^3\theta-16\sin^3\theta+16\sin^5\theta\\ &= 5\sin\theta-20\sin^3\theta+16\sin^5\theta.\end{align}$$

In particular, for $\theta=72^\circ,$ making the substitution $s=\sin 72^\circ,$ we have $$0=\sin 360^\circ=\sin(5\cdot 72^\circ)=5s-20s^3+16s^5.$$ Observing that we can't have $\sin 72^\circ=0,$ we have $$0=5-20s^2+16s^4=16(s^2)^2-20(s^2)+5.$$ By quadratic formula, we find that $$s^2=\frac{5\pm\sqrt5}8.$$ Observing that $s\ge\sin 60^\circ=\frac{\sqrt3}2,$ we have $s^2\ge\frac34,$ so we conclude that $s^2=\frac{5+\sqrt5}8,$ and so $$\cos 144^\circ=1-2\sin^2(72^\circ)=1-2s^2=1-\frac{5+\sqrt5}4=-\frac{1+\sqrt5}4.$$