Linear Algebra – Direct Sum of Kernel of a Projection and Its Image

linear algebra

I got the following question as my homework.

Given $V$ is a vector space with $P \in \operatorname{End} V$. $P \circ P = P$ ("P is idempotent"). Show that $V = \operatorname{Ker} P \oplus \operatorname{Im} P$.

One $P$ I can imagine is a projection from 3d-space to plane, that just sets some coordinates to zero. For example $\begin{pmatrix} x \\ y \\ z\end{pmatrix} \mapsto \begin{pmatrix}x \\ y \\ 0\end{pmatrix}$. Then $\operatorname{Ker} P$ would give the line $\begin{pmatrix} 0 \\ 0 \\ z\end{pmatrix}$ and $\operatorname{Im} P$ would contain all $\begin{pmatrix}x \\ y \\ 0\end{pmatrix}$. So the result of $\operatorname{Ker} P \oplus \operatorname{Im} P$ is of course $V$.

But how do I prove that in a mathematical way?

Best Answer

Take $x \in V$. Since $P=P^2$ we must have $Px=P^2x$ and so $P(x-Px)=0$. Hence $x-Px=\xi$ for some $\xi \in \operatorname{Ker}P$. Thus $x = Px + \xi$. This shows that $V=\operatorname{Im}P + \operatorname{Ker}P$. Now take $y \in \operatorname{Im}P \cap \operatorname{Ker}P$. Since $y \in \operatorname{Im}P$ we have $y=Pz$ for some $z \in V$. Applying $P$ to both sides we get $Py=P^2z$. But $y \in \operatorname{Ker}P$, hence $0=Py=P^2z=Pz=y$. This shows that $\operatorname{Im}P \cap \operatorname{Ker}P=\{0\}$ and so we have $V=\operatorname{Im}P \oplus \operatorname{Ker}P$.