[Math] Show that the circle drawn on a focal chord of a parabola $y^2=4ax$, as a diameter touches the directrix

circlesconic sections

Question: Show that the circle drawn on a focal chord of a parabola $y^2=4ax$, as a diameter touches the directrix.

Let the parabola be $y^2=4ax$

Let the focal chord be $y = m(x-a) $

Subbing in $y^2=4ax$

$$y^2=4ax$$

$$ \Leftrightarrow (m(x-a))^2 = 4ax $$

$$ \Leftrightarrow m^2 (x^2-2ax+a^2) = 4ax $$

$$\Leftrightarrow m^2x^2 – 2am^2x + m^2a^2 – 4ax = 0 $$

$$ \Leftrightarrow m^2x^2 -(2am^2+4a)x + m^2a^2 = 0 $$

If $x_1$ and $x_2$ are roots then

$$ x_1 + x_2 = \frac{2am^2+4a}{m^2}$$

$$ \therefore x_1 + x_2 = 2a + \frac{4a}{m^2} $$

and $$ x_1 \cdot x_2 = \frac{m^2a^2}{m^2} $$

$$ \therefore x_1 \cdot x_2 = a^2 $$

Corresponding

$$y_1 + y_2 = m(x_1 – a + x_2 – a)$$

$$y_1 + y_2 = m(x_1 + x_2 – 2a)$$

$$y_1 + y_2 = m(2a + \frac{4a}{m^2} – 2a)$$

$$ \therefore y_1 + y_2 = \frac{4a}{m} $$

$$ y_1 \cdot y_2 = m^2(x_1-a)(x_2-a) $$

$$y_1 \cdot y_2 = m^2(x_1x_2 – a(x_1+x_2) + a^2) $$

$$ y_1 \cdot y_2 = m^2( a^2 – a^2(2 + \frac{4}{m^2}) + a^2) $$

$$ y_1 \cdot y_2 = m^2 (\frac{-4a^2}{m^2}) $$

$$ y_1 \cdot y_2 = -4a^2 $$

Now consider

$$ (x_1 – x_2)^2 = (x_1+x_2)^2 – 4x_1x_2 $$

$$ (x_1 – x_2)^2 = a^2(2 + \frac{4}{m^2})^2 – 4a^2 $$

$$ (x_1 – x_2)^2 = a^2(4+\frac{16}{m^2} + \frac{16}{m^4}) – 4a^2 $$

$$ (x_1 – x_2)^2= \frac{16a^2}{m^2} + \frac{16a^2}{m^4} $$

and

$$ (y_1 – y_2)^2 = (y_1+y_2)^2 – 4y_1y_2 $$

$$(y_1 – y_2)^2 = (\frac{4a}{m})^2 -4 \cdot -4a^2 $$

$$(y_1 – y_2)^2 = \frac{16a^2}{m^2} + 16a^2 $$

Therefore

$$ (x_1 – x_2)^2 + (y_1 – y_2)^2 = \frac{16a^2}{m^2} + \frac{16a^2}{m^4} + \frac{16a^2}{m^2} + 16a^2 $$

$$ (x_1 – x_2)^2 + (y_1 – y_2)^2 = 16a^2(\frac{1}{m^4} + \frac{2}{m^2} + 1) $$

$$ (x_1 – x_2)^2 + (y_1 – y_2)^2 = 16a^2(\frac{1}{m^2} + 1)^2 $$

Hence diameter of the circle is given as

$$ D = \sqrt{16a^2(\frac{1}{m^2} + 1)^2} $$

$$ \therefore D = 4a(\frac{1}{m^2} + 1) $$

Now I am stuck how do I show the circle touches the directrix?

I would like to know if my method is correct , and how I could continue with this.

I would also like to see alternative methods (geometrical and other algebraic)! Thank you.

Best Answer

The equation of the circle is given by $$\left(x-\frac{x_1+x_2}{2}\right)^2+\left(y-\frac{y_1+y_2}{2}\right)^2=\frac 14\left((x_1-x_2)^2+(y_1-y_2)^2\right)$$ From what you've got, you can write it as $$\left(x-\left(a+\frac{2a}{m^2}\right)\right)^2+\left(y-\frac{2a}{m}\right)^2=4a^2\left(\frac{1}{m^2}+1\right)^2$$ Now, set $x=-a$ which is the equation of the directrix to have $$\left(y-\frac{2a}{m}\right)^2=0$$ from which the claim follows.