[Math] Show that $\operatorname{rank}(A+B) \leq \operatorname{rank}(A) + \operatorname{rank}(B)$

inequalitylinear algebramatricesmatrix-rank

I know about the fact that $\operatorname{rank}(A+B) \leq \operatorname{rank}(A) + \operatorname{rank}(B)$, where $A$ and $B$ are $m \times n$ matrices.

But somehow, I don't find this as intuitive as the multiplication version of this fact. The rank of $A$ plus the rank of $B$ could have well more than the columns of $(A+B)$! How can I show to prove that this really is true?

Best Answer

Let the columns of $A$ and $B$ be $a_1, \ldots, a_n$ and $b_1, \ldots, b_n$ respectively. By definition, the rank of $A$ and $B$ are the dimensions of the linear spans $\langle a_1, \ldots, a_n\rangle$ and $\langle b_1, \ldots, b_n\rangle$. Now the rank of $A + B$ is the dimension of the linear span of the columns of $A + B$, i.e. the dimension of the linear span $\langle a_1 + b_1, \ldots, a_n + b_n\rangle$. Since $\langle a_1 + b_1, \ldots, a_n + b_n\rangle \subseteq \langle a_1, \ldots, a_n, b_1, \ldots, b_n\rangle$ the result follows.

Edit: Let me elaborate on the last statement. Any vector $v$ in $\langle a_1 + b_1, \ldots, a_n + b_n\rangle$ can be written as some linear combination $v = \lambda_1 (a_1 + b_1) + \ldots + \lambda_n (a_n + b_n)$ for some scalars $\lambda_i$. But then we can also write $v = \lambda_1 (a_1) + \ldots + \lambda_n (a_n) + \lambda_1 (b_1) + \ldots + \lambda_n (b_n)$. This implies that also $v \in \langle a_1, \ldots, a_n, b_1, \ldots, b_n\rangle$. We can do this for any vector $v$, so

$$\forall v \in \langle a_1 + b_1, \ldots, a_n + b_n\rangle: v \in \langle a_1, \ldots, a_n, b_1, \ldots, b_n\rangle$$

This is equivalent to saying $\langle a_1 + b_1, \ldots, a_n + b_n\rangle \subseteq \langle a_1, \ldots, a_n, b_1, \ldots, b_n\rangle$.

Related Question