[Math] Show that: $\nabla \times (\phi F) = \nabla \phi \times F + \phi \nabla \times F$

calculusvector analysisVector Fieldsvectors

Show that: $\nabla \times (\phi F) = \nabla \phi \times F + \phi \nabla \times F$. Where F is any vector field, and \phi is any scalar field.

My attempt:

Let F = (P,Q,R).
Now by observation, the first term of the RHS of the identity is zero since the curl of a gradient field is 0.

Hence we are trying to prove that:
$$\nabla \times (\phi F) = \phi \nabla \times F$$

Now if I compute the LHS I get:

$$\nabla \times (\phi F) = (\phi _y R_y -\phi _z Q_z) \hat i – (\phi _x R_x – \phi _z R_z) \hat j + (\phi_x Q_x – \phi_y P_y) \hat k$$

and the RHS:

$$\phi \nabla \times F = \phi [(R_y -Q_z) \hat i – (R_x – R_z) \hat j + ( Q_x – P_y) \hat k]$$

But this is not equivalent??

Any know what I have done wrong?

Best Answer

Also \begin{align} \nabla\times(\phi\mathbf{F}) &=\sum_{i,j,k=1}^3\varepsilon_{ijk}\frac{\partial}{\partial x_j}(\phi F_k)\mathbf{e}_i=\\ &=\sum_{i,j,k=1}^3\varepsilon_{ijk}\left[\left(\frac{\partial}{\partial x_j}\phi\right)F_k+\phi\frac{\partial}{\partial x_j}F_k\right]\mathbf{e} _i=\\ &=\sum_{i,j,k=1}^3\varepsilon_{ijk}\left(\frac{\partial}{\partial x_j}\phi\right)F_k\mathbf{e}_i+\sum_{i,j,k=1}^3\varepsilon _{ijk}\phi\frac{\partial}{\partial x_j}F_k\mathbf{e}_i=\\ &=(\nabla\phi)\times\mathbf{F}+\phi\nabla\times\mathbf{F} \end{align}