Inequality – Prove Max Inequality for Metric Spaces

inequalitymetric-spaces

Show that $\max{\{|a|+|b|,|c|+|d|\}} \leq \max{\{|a|,|c|\}}+\max{\{|b|,|d|\}}.$

I wanted to show that $d(p,q)=\max{\{|x_1-x_2|,|y_1-y_2|\}}$ where $p=(x_1,y_1),q=(x_2,y_2)$ is a metric on $\mathbb{R^2}.$ In proving the triangle inequality let $p=(x_1,y_1),q=(x_2,y_2),r=(x_3,y_3).$ Then
\begin{align*}
d(p,r)&=\max{\{|x_1-x_3|,|y_1-y_3|\}}\\
&\le \max{\{|x_1-x_2|+|x_2-x_3|,|y_1-y_2|+|y_2-y_3|\}}\\
&\le \max{\{|x_1-x_2|,|y_1-y_2|\}}+\max{\{|x_2-x_3|,|y_2-y_3|\}}=d(p,q)+d(q,r)
\end{align*}
I don't understand how this inequality is true.

Best Answer

Hint: Try to write

$$\max(f,g)=\frac{|f-g|+f+g}{2}.$$

Maybe can help.