Integration – Prove the Integral of (2cos(2?)+cos(3?))/(5+4cos(?)) from 0 to ? Equals ?/8

complex-analysiscontour-integrationdefinite integralsintegration

I want to prove that $\displaystyle\int_0^\pi\frac{2\cos(2\theta)+\cos(3\theta)}{5+4\cos(\theta)}d\theta=\frac{\pi}{8}$

My ideas, I don't know if they lead anywhere:

Let's substitute $\cos(\theta)=\frac{e^{i\theta}+e^{-i\theta}}{2}$ and $z=e^{i\theta}$ right after:

$\displaystyle\int_0^\pi\frac{2\cos(2\theta)+\cos(3\theta)}{5+4\cos(\theta)}d\theta=-i\cdot\int_1^{-1}\frac{z^2+z^{-2}+\frac{1}{2}z^3+\frac{1}{2}z^{-3}}{5z+2z^2+2}dz$

This now gives me 4 new integrals, for example

$\displaystyle-i\int_1^{-1}\frac{z^2}{2z^2+5z+2}dz$, $\displaystyle-i\int_1^{-1}\frac{1}{2z^4+5z^3+2z^2}dz$ and so on.

But since I haven't been able to solve any of the new integrals, I'm a little lost.

Edit: Can't I do a partial fractions decomposition of all the 4 integrals and solve them seperately?

Best Answer

If you wish to exploit the residue theorem, then first exploit the fact that the integral is even. In addition, use Euler's formula to write $2\cos(2\theta)+\cos(3\theta)=\text{Re}(2e^{i2\theta}+e^{i3\theta})$.

Then, we have

$$\begin{align} \int_0^\pi \frac{2\cos(2\theta)+\cos(3\theta)}{5+4\cos(\theta)}\,d\theta&=\frac12\text{Re}\left(\oint_{|z|=1}\frac{2z^2+z^3}{5+2(z+z^{-1})}\,\frac{1}{iz}\,dz\right)\\\\ &=\frac12\text{Re}\left(\frac1i\oint_{|z|=1}\frac{z^2(2+z)}{(2z+1)(z+2)}\,dz\right)\\\\ &=\frac12\text{Re}\left(\frac1i\oint_{|z|=1}\frac{z^2}{2z+1}\,dz\right)\\\\ &=\frac{\pi}{8} \end{align}$$

And we are done!

Related Question