Calculus – Show that ?_0^? log²(tan(x/4))dx = ?³/4

calculuscomplex-analysisdefinite integralsintegrationreal-analysis

Hi I am trying to prove the relation
$$
I:=\int_0^\pi \log^2\left(\tan\frac{ x}{4}\right)dx=\frac{\pi^3}{4}.
$$
I tried expanding the log argument by using $\sin x/ \cos x=\tan x,$ and than used $\log(a/b)=\log a-\log b$, I get
$$
I=\int_0^\pi \left( \log \sin \frac{x}{4}-\log\cos \frac{x}{4}\right)^2dx.
$$
We can distribute this out
$$
\int_0^\pi \log^2 \sin \frac{x}{4}dx +\int_0^\pi \log^2\cos \frac{x}{4}dx-2\int_0^\pi\log \sin \frac{x}{4}\log \cos \frac{x}{4}dx.
$$
Now I am stuck at how to solve these. Thanks.

Best Answer

$\newcommand{\+}{^{\dagger}} \newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\down}{\downarrow} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\isdiv}{\,\left.\right\vert\,} \newcommand{\ket}[1]{\left\vert #1\right\rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert} \newcommand{\wt}[1]{\widetilde{#1}}$ $\ds{I \equiv \int_{0}^{\pi}\ln^{2}\pars{\tan\pars{x \over 4}}\,\dd x ={\pi^{3} \over 4\phantom{^{3}}}:\ {\large ?}}$

\begin{align} I&=4\int_{0}^{\pi/4}\ln^{2}\pars{\tan\pars{x}}\,\dd x =4\int_{0}^{1}{\ln^{2}\pars{x} \over x^{2} + 1}\,\dd x =2\int_{0}^{\infty}{\ln^{2}\pars{x} \over x^{2} + 1}\,\dd x \\[3mm]&=2\lim_{\mu \to 0}\partiald[2]{}{\mu} \int_{0}^{\infty}{x^{\mu} \over x^{2} + 1}\,\dd x =\lim_{\mu \to 0}\partiald[2]{}{\mu} \int_{0}^{\infty}{x^{\pars{\mu - 1}/2} \over x + 1}\,\dd x \end{align}

With $\ds{t \equiv {1 \over x + 1}\quad\imp\quad x = {1 \over t} - 1}$: \begin{align} I&=\lim_{\mu \to 0}\partiald[2]{}{\mu} \int_{1}^{0}t\pars{1 - t}^{\pars{\mu - 1}/2}t^{\pars{1 - \mu}/2}\, \pars{-\,{\dd t \over t^{2}}} \\[3mm]&=\lim_{\mu \to 0}\partiald[2]{}{\mu}\int_{0}^{1}t^{-\pars{1 + \mu}/2} \pars{1 - t}^{\pars{\mu - 1}/2}\,\dd t =\lim_{\mu \to 0}\partiald[2]{{\rm B}\pars{1/2 - \mu/2,1/2 + \mu/2}}{\mu} \\[3mm]&=\lim_{\mu \to 0}\partiald[2]{}{\mu} \bracks{\Gamma\pars{1/2 - \mu/2}\Gamma\pars{1/2 + \mu/2} \over \Gamma\pars{1}} =\lim_{\mu \to 0}\partiald[2]{}{\mu} \braces{\pi \over \sin\pars{\pi\bracks{1/2 + \mu/2}}} \\[3mm]&=\pi\lim_{\mu \to 0}\partiald[2]{\sec\pars{\pi\mu/2}}{\mu} =\pi\lim_{\mu \to 0}\bracks{% {1 \over 4}\,\pi^{2}\sec^{3}\pars{\pi\mu \over 2} + {1 \over 4}\,\pi^{2}\sec\pars{\pi\mu \over 2}\tan^{2}\pars{\pi\mu \over 2}} \\[3mm]&=\pi\pars{\pi^{2} \over 4} \end{align}

$\ds{{\rm B}\pars{x,y}}$ and $\ds{\Gamma\pars{z}}$ are the Beta and Gamma Functions, respectively, and we used well known properties of them.

$$ \int_{0}^{\pi}\ln^{2}\pars{\tan\pars{x \over 4}}\,\dd x = {\pi^{3} \over 4\phantom{^{3}}} $$