Integration – Proving $\int_{0}^{\infty } \frac {\cos (ax) -\cos (bx)} {x^2}dx=\pi \frac {b-a} {2}$

contour-integrationintegration

show that

$$\int_{0}^{\infty } \frac {\cos (ax) -\cos (bx)} {x^2}dx=\pi \frac {b-a} {2}$$ for $a,b\geq 0$

I would like someone solve it using contour integrals, also I would like to see different solutions using different ways to solve it.

Best Answer

$$\begin{aligned}\int_0^{\infty} \frac{\cos ax-\cos bx}{x^2}\,dx &=\int_0^{\infty}\int_a^{b}\frac{\sin tx}{x}\,dt\,dx \\&=\int_a^{b}\int_0^{\infty}\frac{\sin tx}{x}\,dx\,dt\\&=\int_a^b \frac{\pi}{2}\,dt\\&=\frac{(b-a)\pi}{2}\end{aligned} $$