[Math] Show that an isometric linear operator $T:H\to H$ satisfies $T^* T=I$, where $I$ is the identity operator on $H$.

functional-analysishilbert-spacesoperator-theoryreal-analysis

Show that an isometric linear operator $T:H\to H$ satisfies $T^* T=I$, where $I$ is the identity operator on $H$.

I've been stuck on this for a while and don't really know where to start.

Best Answer

Isometric means $$ \|Tx\|=\|x\|, $$ for all $x\in H$. Equivalently, for all $x,y\in H$ $$ \|T(x+y)\|^2=\|(x+y)\|^2. $$ But $$ \|(x+y)\|^2=\langle x+y,x+y\rangle=\|x\|^2+2\langle x,y\rangle+\|y\|^2, $$ while $$ \|T(x+y)\|^2=\langle T(x+y),T(x+y)\rangle=\|Tx\|^2+2\langle Tx,Ty\rangle+\|Ty\|^2. $$ Thus, for all $x,y\in H$ $$ \langle Tx,Ty\rangle=\langle x,y\rangle. $$ Note that $\langle x,Ty\rangle=\langle T^*,y\rangle$, and the above becomes $$ \langle T^*Tx,y\rangle=\langle x,y\rangle\quad\text{or}\quad \langle (T^*T-I)x,y\rangle=0 $$ for all $x,y\in H$. In particular, for $y=(T^*T-I)x$, it becomes $$ 0=\langle (T^*T-I)x,(T^*T-I)x\rangle=\|(T^*T-I)x\|^2, $$ for all $x\in H$, and thus $T^*T=I$.

Related Question