[Math] Show that a vector field is not conservative (example)

integrationmultivariable-calculusvector analysis

Let $\Omega=\mathbb{R^2}\smallsetminus\{(0,0)\}$ and $$\vec{F}(x,y)=-\frac{y}{x^2+y^2}\vec{i}+\frac{x}{x^2+y^2}\vec{j}$$ To show that the vector field $F$ is not conservative $$\vec{\nabla}\times \vec{F}=0\,\vec{i}+0\,\vec{j}+\bigg(\frac{y^2-x^2}{(x^2+y^2)^2}-\frac{y^2-x^2}{(x^2+y^2)^2}\bigg)\vec{k}=\vec{0}$$ which indicates that it is conservative(?). Alternatively, the scalar function

$$f(x,y)=-\arctan\bigg(\frac{x}{y}\bigg)$$ is the potential function of the field $F$. If $$\int_C\vec{F}\cdot\mathrm{d}\vec{r}\neq f\big(x(\beta),y(\beta)\big)-f\big(x(\alpha),y(\alpha)\big)$$ $\big($where $r(t)$ is the parametrization of an arbitrary curve $c$ and $\alpha$ and $\beta$ are its starting and end point respectively$\big)$

then the fundumental theorem for line integrals is not satisfied and thus $F$ is not conservative.
I tried using $r(t)=t\vec{i}+t\vec{j}, \space t\in[\alpha,\beta]$, but it didn't work.

What curve would be a better choice for $C$ and what's the deal with $\mathrm{rot}\,F$ being zero?

Best Answer

One of the most important "functions" in classical analysis is the ${\rm arg}$ function, giving the polar angle of a point $(x,y)$, resp., of $z=x+iy$, in the punctured plane "up to an additive constant $2k\pi$". Locally, i.e., in suitable neighborhoods of points $(x_0,y_0)\in\dot{\mathbb R}^2$ this function has well-defined real representants. E.g., in the half plane $x>0$ we may choose the representant $$\phi(x,y):=\arctan{y\over x}\ .$$ Now this ${\rm arg}$ "function" has a well-defined gradient $$\nabla{\rm arg}(x,y)=\left({-y\over x^2+y^2},{x\over x^2+y^2}\right)\qquad\bigl((x,y)\ne(0,0)\bigr)\ .$$It turns out that your ${\bf F}$ is nothing else but $\nabla{\rm arg}$. Since, locally, ${\rm arg}$ is represented by smooth functions $(x,y)\mapsto\phi(x,y)$ it follows that ${\rm curl}\,{\bf F}\equiv0$.

But it is impossible to concatenate the local polar angles $\phi(x,y)$ to one single real-valued polar angle function $\phi:\>\dot{\mathbb R}\to{\mathbb R}$. This then implies that the given ${\bf F}$ is not conservative. A definitive proof of this fact comes from computing $\int_\gamma {\bf F}\cdot d{\bf z}$ along the unit circle $\gamma$. Along this circle the argument increases continuously by $2\pi$, hence the value of this integral is $2\pi\ne0$.

Related Question