[Math] Show $T$ is a bounded linear operator

functional-analysisnormed-spaces

Let $T:C[0,1]\rightarrow C[0,1]$ be defined as:
$$(Tf)(x)=\int_{0}^{1}xyf(y)\,\mathrm{d}y.$$

Show $T$ is a bounded linear operator and calculate its norm.

My idea:
First I know that $\Vert f\Vert=\sup_{y\in[0,1]} |f(y)|$ and $f$ is defined and continuous on $[0,1]$. I feel that the integral is clearly not ill-defined since:
$$\int_{0}^{1}xyf(y)\,\mathrm{d}y\leq x\int_{0}^{1}y\cdot\sup_{z\in[0,1]}|f(z)|\,\mathrm{d}y=x\sup_{z\in[0,1]}|f(z)|$$ (not sure about that)
Now, if $\Vert f\Vert\neq 0$, we can find the norm of the operator by applying the following formula:
$\sup\frac{\Vert Tf\Vert}{\Vert f\Vert}=\sup\frac{\sup\left|\int_{0}^{1}xyf(y)dy\right|}{\sup|f|}$, but where does it lead?

Best Answer

If $x\in[0,1]$ and $\lVert f\rVert=1$, then\begin{align}\bigl\lvert(Tf)(x)\bigr\rvert&=\left\lvert\int_0^1xyf(y)\,\mathrm dy\right\rvert\\&\leqslant x\int_0^1y\bigl\lvert f(y)\bigr\rvert\,\mathrm dy\\&\leqslant x\int_0^1y\,\mathrm dy\\&=\frac x2.\end{align}Therefore, $\lVert Tf\rVert\leqslant\frac12$. Actuallly, $\lVert Tf\rVert=\frac12$; just see what happens if $f=1$.

Related Question