[Math] Series Rearrangement

sequences-and-series

Show that if the series A is absolutely convergent then rearrangement of the series is also convergent and converges to the same limit.

I can't think of any way to solve. Please help

Best Answer

Suppose $A = \sum_{n=1}^{\infty} a_n$, where the convergence is absolute. Let $b : \mathbb{N} \to \mathbb{N}$ be a bijection.

Let $\epsilon > 0$. Since the series converges absolutely to $A$, there exists $N \in \mathbb{N}$ such that $$\left|\sum_{n=1}^{M} a_n - A\right| < \epsilon/2$$ and $$\sum_{n=M}^{\infty} |a_n| < \epsilon/2$$ for all $M \geq N$.

Let $M$ be large enough that $C_N = \{1,2,\ldots,N\} \subseteq \{b(1),b(2),\ldots,b(M)\} = B_M$. Then $$\begin{aligned} \left|\sum_{n=1}^{M} a_{b(n)} - A\right| &= \left|\sum_{n \in B_M} a_{n} - A\right| \\ &= \left|\sum_{n \in C_N} a_n + \sum_{n \in B_M \setminus C_N}a_n - A \right|\\ &\leq \left| \sum_{n \in C_N} a_n - A\right| + \left| \sum_{n \in B_M \setminus C_N}a_n \right| \\ &= \left| \sum_{n=1}^{N} a_n - A \right| + \left| \sum_{n \in B_M \setminus C_N} a_n \right| \\ & \leq \epsilon/2 + \left| \sum_{n \in B_M \setminus C_N} a_n \right| \\ & \leq \epsilon/2 + \sum_{n \in B_M \setminus C_N} |a_n| \\ & \leq \epsilon/2 + \sum_{n=N+1}^{\infty}|a_n| \\ & \leq \epsilon \end{aligned}$$