[Math] Second fundamental form and Weingarten map

differential-geometry

I know two definitions of the 2nd fundamental form on 2-surfaces in $\mathbb R^3$:

1) For a parametrization $X(u,v)$ of the surface and the normal vector $\nu$, the 2nd fundamental form is given by the matrix

$$
\left(
\begin{array}
& X_{uu} \cdot\nu & X_{uv}\cdot\nu \\
X_{vu} \cdot\nu & X_{vv}\cdot\nu
\end{array}
\right)
$$

where

$$X_{uv}=\frac{\partial}{\partial u}\frac{\partial}{\partial v}X$$

2) $\Pi(x,y)=-\langle Dn_p(x),y\rangle$

where $Dn_p$ is the Weingarten map and $\langle,\rangle$ the scalar product in $\mathbb R^3$.

How can I show that the two definitions define the same thing?

Best Answer

Differentiate the equations $\langle n,X_u\rangle = \langle n,X_v\rangle = 0$ and consider $\mathbf{II}(X_u,X_u)$, $\mathbf{II}(X_u,X_v)$, and $\mathbf{II}(X_v,X_v)$.

Related Question