[Math] SDE and expectation of stopping time

probability theorystochastic-processes

Let $X_t$ be a solution to the SDE, $dX_t=X_t \,dt+X_t\,dW_t $, $X_0=x>0$ where $W_t$ is brownian motion,
then the solution to this SDE is $X_t=xe^{\frac{t}{2}+W_t}$.

Let $\tau=\inf_{t>0} \{t:X_t\ge R\}$. I am not sure how to calculate the expectation of the stopping time $\mathbb{E}_x[\tau]$.

Thank you

Best Answer

Observe that $(W_t)_{t\geqslant0}$ is a martingale, hence the optional stopping theorem yields $\mathbb{E}[W_\tau]=\mathbb{E}[W_0]$. Thus, $\mathbb{E}[W_\tau]=\mathbb{E}_x[\log(X_\tau)-\log(X_0)-\frac{1}{2}\tau]=0$ and $\mathbb{E}_x[\tau]=2\log(R/x)$.