[Math] Rudin Principles Theorem 2.40: Every k-cell is compact.

real-analysis

In the proof $I$ is a $k$-cell whose coordinates are bounded by $a_{j}\le x_{j}\le b_{j}$ where $1\le j\le k$. From the proof: Put $c_{j}=(a_{j}+b_{j})/2$.
The intervals $[a_{j},c_{j}]$ and $[c_{j},b_{j}]$ then determine
$2^{k}$ $k$-cells $Q_{i}$ whose union is $I$.
What does each of the $Q_{i}$ look like?

Best Answer

As an example, look at the 3-cell $I=[0,1]\times[10,20]\times[0,10]$. Then we get $c_1=1/2, c_2=15$ and $c_3=5$. So we can create $2^3=8$ new 3-cells, $$\begin{align*} Q_1 &= [0,1/2]\times[10,15]\times[0,5] \\ Q_2 &= [0,1/2]\times[10,15]\times[5,10] \\ \vdots \\ Q_8 &= [1/2,1]\times[15,20]\times[5,10], \end{align*}$$ whose union is the original 3-cell, $I$.