[Math] Relationship with Hermite polynomials and the Laguerre polynomials

calculusorthogonal-polynomialspolynomialsrecurrence-relationsspecial functions

We knew that, the generalized Laguerre polynomials $L_n^{(-1/2)} $ are related to the Hermite polynomials $H_{2n}$ by:

$$ H_{2n}(x) = (-1)^n 2^{2n} n! \, L_n^{(-1/2)} (x^2).$$

I look for a formula connecting the generalized Laguerre polynomials $L_n^{(-1)} (x)$ and the Hermite polynomials $H_{n}$.

Thank you in advance

Best Answer

Now bear in mind, I've never used Laguerre polynomials before so be warned. Here's my attempt, using some recurrnce relations described on Wikipedia. Maybe there's simpler, and better, ways of doing it than mine.


https://en.wikipedia.org/wiki/Laguerre_polynomials#Recurrence_relations

$$ \begin{align} L_n^{(\alpha+\beta+1)}(x+y)&= \sum_{i=0}^n L_{i}^{(\alpha)}(x)L_{n-i}^{(\beta)}(y) \\ \Rightarrow L_n^{(1/2)}(x)&= \sum_{i=0}^n L_{i}^{(-1/2)}(x)L_{n-i}^{(0)}(0) \\ \Rightarrow L_n^{(1)}(x)&= \sum_{i=0}^n L_{i}^{(1/2)}(x/2)L_{n-i}^{(-1/2)}(x/2) \\ L_n^{(\alpha)}(x) &= L_n^{(\alpha+1)}(x) - L_{n-1}^{(\alpha+1)}(x) \\ \Rightarrow L_n^{(0)}(x)&= L_n^{(1)}(x) - L_{n-1}^{(1)}(x) \\ \Rightarrow L_n^{(-1)}(x)&= L_n^{(0)}(x) - L_{n-1}^{(0)}(x) \\ \Rightarrow L_n^{(-1)}(x) &= \left(L_n^{(1)}(x) - L_{n-1}^{(1)}(x) \right) - \left(L_{n-1}^{(1)}(x) - L_{n-2}^{(1)}(x) \right) \\ &= L_n^{(1)}(x) - 2L_{n-1}^{(1)}(x)+ L_{n-2}^{(1)}(x) \\ &=\small{ \left[\sum_{i=0}^n L_{i}^{(1/2)}(x/2)L_{n-i}^{(-1/2)}(x/2)\right] -2\left[\sum_{i=0}^{n-1} L_{i}^{(1/2)}(x/2)L_{n-1-i}^{(-1/2)}(x/2)\right]+ \left[\sum_{i=0}^{n-2} L_{i}^{(1/2)}(x/2)L_{n-2-i}^{(-1/2)}(x/2)\right]} \\ &=\small{L_{n}^{(1/2)}(x/2)L_{0}^{(-1/2)}(x/2)+L_{n-1}^{(1/2)}(x/2)L_{1}^{(-1/2)}(x/2)-2L_{n-1}^{(1/2)}(x/2)L_{0}^{(-1/2)}(x/2)+\sum_{i=0}^{n-2} L_{i}^{(1/2)}(x/2)\left[L_{n-i}^{(-1/2)}(x/2)-2L_{n-1-i}^{(-1/2)}(x/2)+L_{n-2-i}^{(-1/2)}(x/2)\right]} \\ &=\small{L_{n}^{(1/2)}(x/2)+L_{n-1}^{(1/2)}(x/2)\left(\frac{1-x}{2}-2\right)+\ldots} \\ &=\small{\left[\sum_{j=0}^n L_{j}^{(-1/2)}(x)\right]+\left[\sum_{j=0}^{n-1} L_{j}^{(-1/2)}(x)\right]\left(\frac{-3-x}{2}\right)+\sum_{i=0}^{n-2}\left(\left[\sum_{j=0}^n L_{j}^{(-1/2)}(x)\right]\left[L_{n-i}^{(-1/2)}(x/2)-2L_{n-1-i}^{(-1/2)}(x/2)+L_{n-2-i}^{(-1/2)}(x/2)\right]\right)} \end{align}$$


So now you can substitute in your relation $H_{2n}(x) = (-1)^n 2^{2n} n! \, L_n^{(-1/2)} (x^2)$, and you're done, albeit with a rather convoluted formula.