[Math] Relationship between homology of suspension of $X$ and $X$

algebraic-topology

The exercise is the following:

Show that, for any homology theory (satisfying the usual axioms), there is a natural isomorphism $ \tilde{H_i}(X) \rightarrow \tilde{H}_{i+1}(\Sigma X)$.

Well, I tried using the long exact sequence:

$$…\rightarrow \tilde{H}_{i+1}(X_{1/2}) \rightarrow \tilde{H}_{i+1}(\Sigma X) \rightarrow H_{i+1}(\Sigma X, X_{1/2}) \rightarrow \tilde{H}_{i}(X_{1/2}) \rightarrow \tilde{H}_{i}(\Sigma X) \rightarrow …$$

where $X_{1/2}$ is $\{1/2\} \times X$ in the suspension. Then, I tried to compute $H_{i+1}(\Sigma X, X_{1/2})$. For that, I enlarged a bit $X_{1/2}$ to $\overline{X}_{1/2}:=[\frac{1}{4}, \frac{3}{4}] \times X$ and by excision (cutting off a small neighbourhood of $X_{1/2}$) and the long exact sequence for the pair $(C, X_{3/4})$, where $C$ is the upper part of the "cone" that is left, I managed to prove that:

$$H_{i+1}(\Sigma X, X_{1/2}) \cong H_{i}(X) \oplus H_i(X)$$

but I got stuck after this.

Best Answer

I'm going to use a different notation mostly because I'm largely copying this out of an old homework of mine.

Let $C_+^n$ and $C_-^n$ be the cones in $\Sigma X$, let $U$ be a neighborhood around the cone point with $\overline{U}\subset Int(C_-^n)$. Then $U$ can be excised, so

$$\widetilde{H}_q(\Sigma X,C_-^n)\simeq \widetilde{H}_q(\Sigma X\setminus U,C_-^n\setminus U).$$

Since $(\Sigma X\setminus U,C_-^n\setminus U)$ deformation retracts to $(C_+^n,X)$ we get

$$\widetilde{H}_q(\Sigma X,C_-^n)\simeq\widetilde{H}_q(C_+^n,X)$$

Since $CX$ is contractible, $C_+^n\simeq C_-^n\simeq \{pt.\}$, and thus $\widetilde{H}_\ast(C_+^n)\simeq\widetilde{H}_\ast(C_-^n)\simeq 0$. Then the long exact sequence

$$ \dots\to \widetilde{H}_q(C_-^n)\to\widetilde{H}_q(\Sigma X)\to \widetilde{H}_q(\Sigma X,C_-^n)\to\widetilde{H}_{q-1}(C_-^n)\to\dots $$

gives

$$ \dots\to 0 \to\widetilde{H}_q(\Sigma X)\to \widetilde{H}_q(\Sigma X,C_-^n)\to 0 \to\dots $$

so that $\widetilde{H}_q(\Sigma X)\simeq\widetilde{H}_q(\Sigma X, C_-^n)$. Similarly, the long exact sequence

$$ \dots\to \widetilde{H}_q(C_+^n)\to\widetilde{H}_q(C_+^n,X)\to \widetilde{H}_{q-1}(X)\to\widetilde{H}_{q-1}(C_+^n)\to\dots $$

gives

$$ \dots\to 0 \to\widetilde{H}_q(C_+^n,X)\to \widetilde{H}_{q-1}(X)\to 0 \to\dots $$

so that $ \widetilde{H}_q(C_+^n,X)\simeq \widetilde{H}_{q-1}(X) $.

Thus, $\widetilde{H}_q(\Sigma X)\simeq\widetilde{H}_q(\Sigma X, C_-^n)\simeq\widetilde{H}_q(C_+^n,X)\simeq \widetilde{H}_{q-1}(X) $.