[Math] Relation between Vectors from Orthocentre and Circumcentre in an acute angle triangle

euclidean-geometrygeometrytrianglesvectors

Given an acute-angled triangle $\Delta ABC$ having it's Orthocentre at $H$ and Circumcentre at $O$. Prove that $\vec{HA} + \vec{HB} + \vec{HC} = 2\vec{HO}$

I realise that $\vec{HO} = \vec{BO} + \vec{HB} = \vec{AO} + \vec{HA} =\vec{CO} + \vec{HC}$ which leads to $3\vec{HO} = (\vec{HA} + \vec{HB} + \vec{HC}) + (\vec{AO} + \vec{BO} + \vec{CO})$

How can I prove that $(\vec{AO} + \vec{BO} + \vec{CO}) = \vec{HO}$ in order to solve the problem?

Thank you for answering!

Best Answer

If $G$ is the centroid of the triangle, that relation follows from $$ \vec{AO} + \vec{BO} + \vec{CO}= \vec{AG} + \vec{BG} + \vec{CG}+3\vec{GO} =3\vec{GO}=\vec{HO} $$ where the last one is a well-known equality, arising in the proof for the Euler line, see e.g. https://en.wikipedia.org/wiki/Euler_line#A_vector_proof .