[Math] Relation between integral, gamma function, elliptic integral, and AGM

calculuselliptic integralsintegrationspecial functions

The integral $\displaystyle\int\limits_0^{\infty}\frac {\mathrm dx}{\sqrt{1+x^4}}$ is equal to $\displaystyle \frac{\Gamma \left(\frac{1}{4}\right)^2}{4 \sqrt{\pi }}$.

It is calculated or verified with a computer algebra system that $\displaystyle \frac{\Gamma \left(\frac{1}{4}\right)^2}{4 \sqrt{\pi }} = K\left(\frac{1}{2}\right)$ , where $K(m)$ is the complete elliptic integral of the first kind. This is in relation to what is called the elliptic integral singular value.

It is also known or verified that
$\displaystyle K\left(\frac{1}{2}\right) =\displaystyle \int_0^{\frac{\pi }{2}} \frac{1}{\sqrt{1-\frac{\sin ^2(t)}{2}}} \, dt= \frac{1}{2} \int_0^{\frac{\pi }{2}} \frac{1}{\sqrt{\sin (t) \cos (t)}} \, dt$.

Can one prove directly or analytically that

$\displaystyle\int\limits_0^{\infty}\frac {\mathrm dx}{\sqrt{1+x^4}} =\frac{1}{2} \int_0^{\frac{\pi }{2}} \frac{1}{\sqrt{\sin (t) \cos (t)}} \, dt =\displaystyle \int_0^{\frac{\pi }{2}} \frac{1}{\sqrt{1-\frac{\sin ^2(t)}{2}}} \, dt = K\left(\frac{1}{2}\right) $ ?

Best Answer

This one is a cakewalk. Just use the definition $$K(1/2)=\int_{0}^{\pi/2}\frac{dx}{\sqrt{1-(1/2)\sin^{2}x}}=\frac{\sqrt{2}}{2}\int_{0}^{\pi}\frac{dx}{\sqrt{2-\sin^{2}x}}$$ and then put $t=\tan (x/2)$ so that $dx=2/(1+t^2)\,dt$ and $$2-\sin^{2}x=2-\frac{4t^2}{(1+t^2)^{2}}=2\cdot\frac{1+t^{4}}{(1+t^{2})^{2}}$$ and hence we have $$K(1/2)=\frac{1}{\sqrt{2}}\int_{0}^{\infty}\frac{1+t^{2}}{\sqrt{2}\sqrt{1+t^{4}}}\cdot\frac{2}{1+t^2}\,dt=\int_{0}^{\infty}\frac{dt}{\sqrt{1+t^{4}}}$$ Similarly put $\tan t=x^2$ to get $$\frac{1}{2}\int_{0}^{\pi/2}\frac{dt}{\sqrt{\sin t\cos t}} =\int_{0}^{\infty} \frac{dx} {\sqrt{1+x^{4}}}$$ This avoids the more complicated approaches from the theory of elliptic and theta functions and AGM.

Related Question