[Math] Ratio test and the radius of convergence

convergence-divergencepower seriesreal-analysissequences-and-series

Let
$$
\sum_{n=0}^\infty c_n (z-a)^n
$$
be a power series. If the value
$$
r=\underset{n\to\infty}{\lim}\left|\frac{c_n}{c_{n+1}}\right|
$$
exists (the limit exists and is a real number), it is the radius of convergence $R$ of the power series. This means that the series converges for all $z$ with $|z-a|<R$.

  1. Is the radius of convergence $R$ the whole $\mathbb{R}$ if the above limit $r$ is $\infty$ (and therefore does not exist in the strict sense)?
  2. Is the radius of convergence $R$ the whole $\mathbb{R}$ if $r'=\underset{n\to\infty}{\lim\operatorname{sup}}\left|\frac{c_n}{c_{n+1}}\right|$ is $\infty$? This is probably not true. What is a counterexample?

Best Answer

The answer to question 1. is yes.

Let $R=|z-a|$. Since $\lim_{n\to\infty}\left|\frac{c_n}{c_{n+1}}\right|=\infty$ there is some $N$ such that $\left|\frac{c_n}{c_{n+1}}\right| > 2R$ for all $n\geq N$. By induction $\left|\frac{c_N}{c_n}\right| > (2R)^{n-N}$.

Thus $$\sum_{n=N}^\infty |c_n (z-a)^n| = |c_N|\sum_{n=N}^\infty\left|\frac{c_n}{c_N}\right|R^{n} < |c_N|\sum_{n=N}^\infty (2R)^{N-n}R^{n} $$ $$= |c_N|R^{N}\sum_{n=0}^\infty 2^{-n} = 2|c_N|R^N$$ so the series converges absolutely.

For a concrete counterexample for 2. take $c_n = \begin{cases} 1 & n\mbox{ even} \\ \frac{1}{n} & n\mbox{odd}\end{cases}$ and note that the series clearly diverges for $|z-a|\geq1$.