[Math] Raising a square matrix to the k’th power: From real through complex to real again – how does the last step work

complex numberseigenvalues-eigenvectorslinear algebramatrices

I am reading Applied linear algebra: the decoupling principle by Lorenzo Adlai Sadun (btw very recommendable!)

On page 69 it gives an example where a real, square matrix $A=[(a,-b),(b,a)]$ is raised to the k'th power: $$A^k.(1,0)^T$$ The result must be a real vector. Nevertheless it seems easier to do the calculation via the complex numbers:$$=((a+bi)^k+(a-bi)^k).(1,0)^T/2-i((a+bi)^k-(a-bi)^k).(0,1)^T/2$$ At this stage the result seems to be complex. But then comes the magic step and everything gets real again:$$=Re[(a+bi)^k].(1,0)^T+Im[(a+bi)^k].(0,1)^T$$ Now I did some experiments and made two observations: First, this step seems to yield the correct results – yet I don't know why. Second, the raising of this matrix to the k'th power even confuses CAS (e.g. WolframAlpha aka Mathematica, see e.g. the plots here) because they most of the time seem to think that the results are complex.

My question
Could you please give me a proof/explanation for the correctness of the last step. Perhaps you will even know why CAS are confused too (perhaps it is because their algorithms also go through the complex numbers and they too have difficulties in seeing that the end result will be real?)

Best Answer

What you are using is that for a given complex number $z=a+bi$, we have $\frac{z+\overline{z}}{2}=a={\rm Re}(z)$ and $\frac{z-\overline{z}}{2}=ib=i{\rm Im}(z)$ (where $\overline{z}=a-bi$). Also check that $\overline{z^k}=\overline{z}^k$ for all $k \in \mathbb{N}$.