[Math] Question about the distance between two sets.

analysisreal-analysis

I am confused about this notation, can someone give me an explicit example on how to calculate the distance between two sets with this formula from real analysis? Also, when would D(A,B)=0?

Let $(\mathcal E,d)$ be a metric space. For non-empty subsets $A,B \subset \mathcal{E}$ define
$$D(A,B):=\max \{\sup_{a\in A} \inf_{\lower{0.5ex}{b \in B}} d(a,b),\sup_{b \in B} \inf_{\lower{0.5ex}{a \in A}} d(a,b)\}.$$
Where, for a map $f:S \rightarrow \mathbb{R}$

$\inf\limits_{s \in S}f(s):=\inf\{f(s):s \in S\}$ and $\sup\limits_{s \in S} f(s) := \sup \{f(s):s\in S\}$

Best Answer

$D(A,B)$ is the maximum of the upper bound on the lower bound on the distance between two elements in the sets either way.   Which is to say (very informally) the "largest" of the "shortest" distance measures between the sets.


Take, for example $A=\{0, 2\}, B=\{1,2,4\}$ and $d(x,y)=\lvert x-y\rvert$

$$\begin{align} {\sup}_{a\in A}{\inf}_{{b\in B}}~d(a,b) = ~ & \sup \big\{\inf \{d(a,b): b\in B\}: a\in A\big\} \\ =~ & \sup\big\{\inf\{d(a,1), d(a, 2), d(a,4)\}: a\in A\big\} \\ = ~ & \sup\big\{\inf \{d(0,1), d(0,2), d(0,4)\},\inf\{d(2,1), d(2,2), d(2,4)\}\big\} \\ = ~ & \sup\big\{\inf\{ 1,2,4\}, \inf\{1,0,2\}\big\} \\=~ & \sup\big\{ 1,0\big\} \\=~ & 1\\[2ex] {\sup}_{b\in B}{\inf}_{{a\in A}}~d(a,b) = ~ & \sup\big\{\inf \{d(a,b): a\in A\}: b\in B\big\} \\ = ~ & \sup\big\{\inf\{d(0,b), d(2,b)\}: b\in B\big\} \\ = ~ & \sup\big\{\inf \{d(0,1), d(2,1)\},\inf\{d(0,2), d(2,2)\},\inf\{d(0,4),d(2,4)\}\big\} \\ = ~ & \sup\big\{\inf\{ 1,1\}, \inf\{2,0\}, \inf\{4,2\}\big\} \\=~ & \sup\big\{ 1,0,2\big\} \\=~ & 2\\[2ex]D(A,B)~=~&\max\{1,2\}\\ =~& 2\end{align}$$


$D(A,B)$ will be zero if $\forall a\in A~\exists b\in B: d(a,b)=0$ and $\forall b\in B~\exists a\in A: d(a,b)=0$.   Every point in either set is zero distance from some point in the other set.   (Notice: This is not claiming they are identical.)