[Math] Proving $ z^n + \frac{1}{z^n} = 2\cos(n\theta) $ for $z = \cos (\theta) + i\sin(\theta)$

complex numberstrigonometry

Question: Prove that if $z = \cos (\theta) + i\sin(\theta)$, then

$$ z^n + {1\over z^n} = 2\cos(n\theta) $$


What I have attempted

If $$ z = \cos (\theta) + i\sin(\theta) $$

then $$ z^n = \cos (n\theta) + i\sin(n\theta) $$

$$ z^n + {1\over z^n} $$

$$ \cos (n\theta) + i\sin(n\theta) + {1\over \cos (n\theta) + i\sin(n\theta)} $$

$$ (\cos (n\theta) + i\sin(n\theta))\cdot(\cos (n\theta) + i\sin(n\theta)) + 1 $$

$$ \left[ {(\cos (n\theta) + i\sin(n\theta))\cdot(\cos (n\theta) + i\sin(n\theta)) + 1\over \cos (n\theta) + i\sin(n\theta)} \right] $$

$$ \left[ {\cos^2(n\theta) + 2i\sin(n\theta)\cos (n\theta) – \sin^2(n\theta) + 1\over \cos (n\theta) + i\sin(n\theta)} \right] $$

Now this is where I am stuck.. I tried to use a double angle identity but I can't eliminate the imaginary part..

Best Answer

setting the value of $z=\cos\theta+i\sin\theta$, $$z^n+\frac{1}{z^n}$$$$=z^n+z^{-n}$$ $$=(\cos\theta+i\sin\theta)^n+(\cos\theta+i\sin\theta)^{-n}$$ Using d-Moivre's theorem, $$=\cos(n\theta)+i\sin(n\theta)+\cos(-n\theta)+i\sin(-n\theta)$$ $$=\cos(n\theta)+i\sin(n\theta)+\cos(n\theta)-i\sin(n\theta)$$ $$=2\cos(n\theta)$$