[Math] Proving there are infinitely many pairs of square-full consecutive integers

elementary-number-theory

So the question goes like this :

A positive integer $n$ is called square-full if for every prime $p$, $p \, | \, n$ implies $p^2 \, | \, n$, i.e. every prime power factor of $n$ occurs at least at the second power. This is equivalent to saying that there is no prime $p$ such that $p \, \| \, n$.

Show that there are infinitely many consecutive pairs of square-full numbers, i.e. infinitely many $n$ such that $n$ and $n+1$ are square-full.

The context of the question highly suggests that this can be proved by induction and it is the solution that I am looking for. It is not a homework, just something that caught my attention because I couldn't find any natural answer to it… I hope I'm not missing something trivial!

I've tried assuming $n_1, n_2, \dots, n_k$ were the first $n_k$ integers such that $n_i$ and $n_i+1$ are square-full, and then generate some polynomial in those $2k$ integers to get a new couple $n_{k+1}$, $n_{k+1} + 1$ but after a few natural tries I got nothing good out of it. Any ideas?

Best Answer

Any product of square-full numbers is square-full.

$4n(n+1) $ is square-full if n, n+1 are.
$4n(n+1)+1=4n^{2}+4n+1=(2n+1)^{2}$

list of square-full numbers at http://oeis.org/A060355

Related Question