Functional Analysis – Proving Banach Space Properties

banach-spacesfunctional-analysisnormed-spaces

Let $B(X,Y)$ be the family of all bounded maps from $X$ to $Y,$ normed linear maps. Then, $B(X,Y) $ is a Banach Space if $Y$ is.

Remark: I've seen this question before $Y$ is a Banach space if $B(X,Y)$ is a Banach space, but it is the converse of my question statement.

MY TRIAL

Let $T_n\in B(X,Y),\;\forall\;n\in \Bbb{N} $ s.t. $T_n\to T,\;\text{as}\;n\to\infty. $ So, $T_n\in B(X,Y),\;\forall\;n\in \Bbb{N} $ implies for each $x\in X,\;T_{n}(x)\in Y.$ Since $Y$ is complete, $T_n(x)\to T(x)\in Y,\;\text{as}\;n\to\infty,\;\forall\;x\in X. $ i.e., $T:X\to Y. $

Also, $T_n\in B(X,Y),\;\forall\;n\in \Bbb{N} $ implies there exists $K\geq 0,$ s.t. $\forall\;n\in \Bbb{N},\;\forall\;x\in X, $
\begin{align} \Vert T_n(x)\Vert \leq K \Vert x\Vert. \end{align}
As $n\to\infty,$
\begin{align} \lim\limits_{n\to \infty}\Vert T_n(x)\Vert= \Vert \lim\limits_{n\to \infty}T_n(x)\Vert= \Vert T(x)\Vert\leq K \Vert x\Vert, \end{align}
which implies $T\in B(X,Y)$ and hence, $ B(X,Y)$ is a Banach space.

Please, kindly check if I'm right or wrong. If it turns out that I'm wrong, kindly provide an alternative proof. Regards!

Best Answer

Credits to Olof Rubin. So, I post the full proof for future readers.

Let $\{T_n\}_{n=1}^{\infty}\in B(X,Y)$, be a Cauchy sequence and $\epsilon>0$ be given. Then, there exists $N$ s.t. forall $m\geq n\geq N,$ $$ \|T_n-T_m\|<\epsilon.$$ Since $$ \|T_n-T_m\|=\sup\limits_{\|x\|\leq 1}\|T_n(x)-T_m(x)\|,\;\;\forall\;m,n\in \Bbb{N},$$ we have that $$ \|T_n(x)-T_m(x)\|\leq\|T_n-T_m\|<\epsilon,\;\;\forall\;m\geq n\geq N,\;\text{for each}\;x\in X.$$

This implies that $T_n(x)\to T(x),\;\text{as}\;n\to\infty$, pointwise and since $Y$ is complete, $T(x)\in Y$

Fix $n\geq N$ and allow $m\to\infty.$ Then, for each $x\in X,$ $$ \|T_n(x)-T(x)\|\leq\epsilon.$$ Taking $\sup$ over $\|x\|\leq 1,$ we have

$$ \|T_n-T\|=\sup\limits_{\|x\|\leq 1}\|T_n(x)-T(x)\|\leq\epsilon,\;\;\forall n\geq N.$$ Hence, $T\in B(X,Y)$ and we're done!