[Math] Proving statements about ceiling and floor functions.

ceiling-and-floor-functionsdiscrete mathematicsfunctionsinequality

Prove or disprove the statements below.

(a) For all positive real numbers x and y, $\lfloor x \cdot y\rfloor ≤ \lfloor x\rfloor \cdot \lfloor y\rfloor $.

(b) For all positive real numbers x and y, $ \lceil x \cdot y\rceil ≤ \lceil x\rceil\cdot \lceil y\rceil $ .


The brackets were not covered in my class and I can't seem to find them on google so I can't even start the problem as I can't figure out their meanings…

Best Answer

$a)$ is false (counter-example $(x,y)=(1.5,1.5)$).

$b)$ is true. Let $x=x_1-r_1,y=y_1-r_2, (x_1,y_1\in\mathbb Z^+), 0\le r_1,r_2< 1$.

$$\lceil xy\rceil=\lceil x_1y_1-r_2x_1-r_1y_1+r_1r_2\rceil\le \lceil x_1y_1 -r_1-r_2+r_1r_2\rceil\le \lceil x_1y_1\rceil=x_1y_1$$

This used $r_1+r_2\ge 2\sqrt{r_1r_2}\ge r_1r_2$.