[Math] Proving $\lim_{x\to 1} x^3=1$ with $\epsilon$-$\delta$ definition

calculusepsilon-deltalimitsproof-verificationreal-analysis

Problem: I need to formally prove that $$\lim_{x\to 1} x^3 = 1.$$

My work: This is what I have so far and I'm generally a bit stuck with these proofs from here onwards.

Because$$-\epsilon < x^3-1 < \epsilon = | x^3-1 | < \epsilon,$$

then
$$ -\epsilon < x^3-1 < \epsilon$$
$$-\epsilon+1 < x^3 < \epsilon +1$$
$$ \sqrt[3]{-\epsilon+1}< x < \sqrt[3]{\epsilon+1}.$$

Hoping that what I have done so far is correct. Am I right in thinking that

$$ \sqrt[3]{-\epsilon+1}< x < \sqrt[3]{\epsilon+1}$$

is giving me an interval where $x$ is going to give me a $f(x)$ value that falls within the distance $\epsilon$ from the limit on the $y$-axis ? Or is this interval smaller than the $\epsilon$-distance on the $y$-axis?

Best Answer

Here is an easy way to prove it (let me know if a step doesn't make sense to you):

Given $\epsilon>0$, we need $\delta>0$ such that if $0<|x-1|<\delta$, then $|x^3-1|<\epsilon$. Now, $$ |x^3-1| = |(x-1)(x^2+x+1)|. $$ If $|x-1|<1$, that is, $-1<x-1<1$, then note that $$ -1<x-1<1\Longleftrightarrow 0<x<2 \Longleftrightarrow x^2+x+1<2^2+2+1=7, $$ and so $$ |x^3-1|=|x-1|(x^2+x+1)<7|x-1|. $$ So if we take $\delta=\min\{1,\frac{\epsilon}{7}\}$, then $$ 0<|x-1|<\delta\Rightarrow |x^3-1|=|x-1|(x^2+x+1)<\frac{\epsilon}{7}\cdot 7 = \epsilon. $$ Thus, by the definition of a limit, $$ \lim_{x\to 1}x^3=1. \;\blacksquare $$