[Math] Proving convexity for multivariable function

convex optimizationconvex-analysis

I am trying to prove the convexity for the following function:
$$f(x) = \sqrt{(a^Tx)^2 + (b^Tx)^2}$$ where $\{a,b,x \} \in \mathbb{R}^n$. I showed that the Hessian is positive semidefinite (which proves the convexity), but the equations are very complicated, so I'm trying to use the definition of convex functions to prove it (i.e., $$f(tx_1 + (1-t)x_2) \leq tf(x_1) + (1-t)f(x_2); \ \forall t \in [0,1]$$

However, I cannot seem to be able to prove this. Any ideas on how to approach this? Your help is much appreciated!

Best Answer

Let $f : \mathbb R^n \to \mathbb R$ be defined by

$$f (\mathrm x) := \sqrt{ (\mathrm a^{\top} \mathrm x)^2 + (\mathrm b^{\top} \mathrm x)^2 } = \sqrt{ \mathrm x^{\top} \mathrm a \mathrm a^{\top} \mathrm x + \mathrm x^{\top} \mathrm b \mathrm b^{\top} \mathrm x } = \sqrt{ \mathrm x^{\top} \left( \mathrm a \mathrm a^{\top} + \mathrm b \mathrm b^{\top} \right) \mathrm x }$$

Let $\mathrm Q := \begin{bmatrix} | & |\\ \mathrm a & \mathrm b\\ | & |\end{bmatrix}$. Hence, $\mathrm a \mathrm a^{\top} + \mathrm b \mathrm b^{\top} = \mathrm Q \mathrm Q^{\top}$ is positive semidefinite and

$$f (\mathrm x) = \sqrt{ \mathrm x^{\top} \left( \mathrm a \mathrm a^{\top} + \mathrm b \mathrm b^{\top} \right) \mathrm x } = \sqrt{ \mathrm x^{\top} \mathrm Q \mathrm Q^{\top} \mathrm x } = \| \mathrm Q^{\top} \mathrm x \|_2$$

Exploiting the subadditivity of $\|\cdot\|_2$,

$$f \left( \gamma \mathrm x_1 + (1-\gamma) \mathrm x_2 \right) = \| \mathrm Q^{\top} (\gamma \mathrm x_1 + (1-\gamma) \mathrm x_2) \|_2 \leq \gamma \, \| \mathrm Q^{\top} \mathrm x_1 \|_2 + (1-\gamma) \, \| \mathrm Q^{\top} \mathrm x_2 \|_2$$

Thus, $f$ is convex.

Related Question