Proving A ? (B ? C) = (A ? B) ? (A ? C)

discrete mathematicselementary-set-theoryproof-writing

Prove the distributive property for sets:

$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

I'm not good with proofs but my understanding is that I have to prove 2 things:

(1) $A \cup (B \cap C) \subset (A \cup B) \cap (A \cap C)$

(2) $A \cap (B \cap C) \supset (A \cup B) \cap (A \cup C)$

This is what I have done so far:

Part (1)

If $x\in A$, then $x \in (A \cup B)$ and $x \in (A \cup C)$.

$\therefore x \in (A \cup B) \cap (A \cap C)$

If $x \in (B \cap C)$ then $x \in (A \cup B)$ and $x \in (A \cup C)$ because $x \in B$ and $x \in C$.

$\therefore x \in (A \cup B) \cap (A \cap C)$

$\therefore A \cup (B \cap C) \subset (A \cup B) \cap (A \cup C)$

Part (2)

Now we have to prove the reverse inequality: $(A \cup B) \cap (A \cap C)$. Then $x \in A \cup B$ and $x \in (A \cup C)$

If $x \in A$, then $x \in A \cup (B \cap C)$


This is where I am up to. I wanted to know whether my approach is correct and if I did part (1) correctly. I'm stuck on part (2) and don't know how to proceed. I'd appreciate any help.

Thank you!!

Best Answer

You must first prove 2 cases:

(1) $A \cap (B \cup C) \subset (A \cap B) \cup (A \cap C)$

(2) $(A \cap B) \cup (A \cap C) \subset A \cap (B \cup C)$

Note that in mathematics we use the following symbols:

$\cap=$ AND = $\land$

$\cup=$ OR = $\lor$

Case 1: $A \cap (B \cup C) \subset (A \cap B) \cup (A \cap C)$

Let $x \in A \cap (B \cup C) \implies x \in A \land x \in (B \cup C)$

$\implies x \in A \land \{ x \in B \lor x \in C \}$

$\implies \{ x \in A \land x \in B \} \lor\{ x \in A \land x \in C \} $

$\implies x \in (A \cap B) \lor x \in (A \cap C)$

$\implies x \in (A \cap B) \cup (A \cap C)$

$\therefore x \in A \cap (B \cup C) \implies x \in (A \cap B) \cup (A \cap C)$

$\therefore A \cap (B \cup C) \subset (A \cap B) \cup (A \cap C)$

Case 2: $(A \cap B) \cup (A \cap C) \subset A \cap (B \cup C)$

Let $x \in (A \cap B) \cup (A \cap C) \implies x \in (A \cap B) \lor x \in (A \cap C)$

$\implies \{x \in A \land x \in B \} \lor \{ x \in A \land x \in C \}$

$\implies x \in A \land \{ x \in B \lor x \in C\}$

$\implies x \in A \land \{B \cup C \}$

$\implies x \in A \cap (B \cup C)$

$\therefore x \in (A \cap B) \cup (A \cap C) \implies x \in A \cap (B \cup C)$

$\therefore (A \cap B) \cup (A \cap C) \subset A \cap (B \cup C)$


$\therefore A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Related Question