[Math] Prove the set identity using the laws of set theory

discrete mathematicselementary-set-theory

$A\cap(B\cup A')\cap B'=\emptyset$

Using the distributive law I got:

$(A\cap B)\cup (A \cap A')\cap B'=\emptyset$

But I don't see any rules to simplify $(A \cap A')$

Any tips in helping me to progress through this problem are appreciated!

Edit:

Staring at the problem more I see I can also organize it this way:

$(A\cap B)\cup (A'\cap B')=\emptyset$

Just not sure how of to use the laws to simplify this into equally the empty set.

Best Answer

Assuming you're using $A^\prime$ to denote the compliment of $A$, note the following.

Simply use the distributivity laws to note:

$A \cap (B \cup A^\prime) \cap B^\prime = ((A \cap B) \cup (A \cap A^\prime)) \cap B^\prime.$

Now, we know $A\cap A^\prime = \emptyset$, so:

$A \cap (B \cup A^\prime) \cap B^\prime = ((A \cap B) \cup \emptyset) \cap B^\prime.$

Note that $(A \cap B) \cup \emptyset$ is the set containing all of the elements in $A \cap B$ and all of the elements in $\emptyset$. However, there are no elements in $\emptyset$, so $(A \cap B) \cup \emptyset$ simply contains all of the elements in $A$. Therefore, $(A \cap B) \cup \emptyset = A \cap B$. Using this, we have:

$A \cap (B \cup A^\prime) \cap B^\prime = (A \cap B) \cap B^\prime.$

Now, set intersection is distributive, so we see

$A \cap (B \cup A^\prime) \cap B^\prime = A \cap (B \cap B^\prime).$

Similar to before, we know $B \cap B^\prime = \emptyset$, so

$A \cap (B \cup A^\prime) \cap B^\prime = A \cap \emptyset = \emptyset.$

Related Question