[Math] Prove the inequality using the binomial theorem

binomial theoreminequality

Prove $3^n \geq 2n^2 +1$ for $n = 1,2,\ldots$ using binomial theorem, applied to $(1+x)^n$ with $x=2$.

So I started with expanding $(1+2)^n$ = ${n \choose 0} + {n \choose 1}2 + {n \choose 2}2^2 + \cdots + {n \choose n} \geq 1 + 2n! + 2^n$

I'm not sure what I'm doing wrong or what the next step should be – any help/hints will be appreciated.

Best Answer

The key is that $$ {n\choose2}2^2=\frac{4n!}{(n-2)!2!}=2n(n-1). $$ Then you have, since all terms are positive, $$ (1+2)^n=1+2n+2n(n-1)+\cdots=1+2n^2+\cdots\geq1+2n^2. $$

Related Question