[Math] Prove that the natural numbers are present on an inductive definition of another set

elementary-set-theoryinductionnatural numbers

If I give you the following definition of the set $A$, how could you prove it is equal the set of the natural numbers without an explicit definiton for the latter?

The set $A$ is inductively defined as follows:

i) $0 \in A$; and
ii) $\forall n$, a natural number, if $n \in A$, then $n+1 \in A$.

I can easily prove that $A$ is contained in the natural numbers, but I'm failing to see how to prove the converse without a similar definition for the natural numbers.

Thanks for taking the time to read me.

Best Answer

It seems to me that your 'proof' that the set $A \subseteq \mathbb{N}$ must have a mistake because basically you're just defining what Tom Apostol calls an inductive set in his Calculus book. I mean, $A$ can just be a set of real numbers and could perfectly well satisfy your two propierties.

For instance you can take $A = [0, \infty[$ and then $A$ satisfies both properties, but nonetheless $A$ is not contained in $\mathbb{N}$.

In fact Apostol's book defines $\mathbb{N}$ as the set of all numbers that belong to every inductive set.