[Math] Prove that $\left (\frac{1}{a}+1 \right)\left (\frac{1}{b}+1 \right)\left (\frac{1}{c}+1 \right) \geq 64.$

inequality

Let $a,b,$ and $c$ be positive numbers with $a+b+c = 1$. Prove that $$\left (\dfrac{1}{a}+1 \right)\left (\dfrac{1}{b}+1 \right)\left (\dfrac{1}{c}+1 \right) \geq 64.$$

Attempt

Expanding the LHS we obtain $\left (\dfrac{1+a}{a} \right)\left (\dfrac{1+b}{b} \right)\left (\dfrac{1+c}{c} \right)$. We are given that $a+b+c = 1$, so substituting that in we get $\left (\dfrac{b+c+2a}{a} \right)\left (\dfrac{a+c+2b}{b} \right)\left (\dfrac{a+b+2c}{c} \right)$. Then do I say $\left (\dfrac{b+c+2a}{a} \right)\left (\dfrac{a+c+2b}{b} \right)\left (\dfrac{a+b+2c}{c} \right) \geq 64$ and see if I can get a true statement from this?

Best Answer

Use the AM GM inequality : $$a+a+b+c\geq 4(a^2bc)^\frac{1}{4}$$ $$a+b+b+c\geq 4(ab^2c)^\frac{1}{4}$$ $$a+b+c+c\geq 4(abc^2)^\frac{1}{4}$$ Multiply the three inequalities and then divide $abc$ on both sides to get the desired inequality.

Related Question