[Math] Prove that if $f$ and $g$ are continuous functions then $f/g$ is also continuous

continuityreal-analysis

I have to prove this,
I know what does it mean for a function to be continuous using $\epsilon-\delta$ definition but yet I'm not being able to prove this one , I've searched on the internet but there's no proof for this one there are only proofs that sum or multiplication of continuous functions is continuous but there's no proof that dividing two continuous functions will give a continuous function. Any help will be appreciated.Thank you!

Best Answer

Let $f(x):(a,b)\to R$ and $g(x):(a,b)\to R$ be continuous at the point $x_o$ $ϵ$ $(a,b)$. Then $f(x)/g(x)$ is continuous at the point $x_o$ $ϵ$ $(a,b)$ , for $g(x_0)$ different from zero.

Proof:

Knowing that $f$ and $g$ are continuous at the point $x_o$ $ϵ$ $(a,b)$ we have that:

1.For every $\epsilon_1>0$ there exists a $\delta_1>0$ such that for every $|x-x_0|<\delta_1$ $\implies$ $|g(x)-g(x_0)|<\epsilon_1$

2.For every $\epsilon_2>0$ there exists a $\delta_2>0$ such that for every $|x-x_0|<\delta_2$ $\implies$ $|f(x)|-f(x_0)|<\epsilon_2$

We need to show that $\lim_{x \to x_0} f(x)/g(x)=f(x_0)/g(x_0)$ we use the $\epsilon-\delta$ definition to prove it :

for every $\epsilon>0$ there exists a $\delta>0$ such that for every $x$ that satisfies the inequality $|x-x_0|<\delta$ implies that $|f(x)/g(x)-f(x_0)/g(x_0)|<\epsilon$

We have:

$|f(x)/g(x)-f(x_0)/g(x_0)|=|f(x)g(x_0)-g(x)f(x_0)|/|g(x)g(x_0)|=|f(x)g(x_0)-f(x_0)g(x_0)+f(x_0)g(x_0)-g(x)f(x_0)|/|g(x)g(x_0)|\leq(|g(x_0)||f(x)-f(x_0)|+|f(x_0)||g(x)f(x_0)|)|g(x)g(x_0)|$

Let $\epsilon_1=|g(x_0)|/2>0$ then there exists a $\delta_1>0$ such that $|x-x_0|<\delta_1$ $\implies$ $|g(x)|-|g(x_0)|\leq|g(x)-g(x_0)|<\epsilon_1$

$\implies$ $1/|g(x)|<2/|g(x_0)|$

so we get:

$|f(x)/g(x)-f(x_0)/g(x_0)|\leq(|g(x_0)||f(x)-f(x_0)|+|f(x_0)||g(x)f(x_0)|)|g(x)g(x_0)|<2(|g(x_0)||f(x)-f(x_0)|+|f(x_0)||g(x)-g(x_0)|)/|g(x_0)|^2=2|f(x)-f(x_0)|/|g(x_0)|+2|f(x_0)||g(x)-g(x_0)|/|g(x_0)|^2$

Now , let $M=\max\{2/|g(x_0)|,2|f(x_0)|/|g(x_0)|^2\}$

and let $\epsilon_1=\epsilon_2=\epsilon/2|M|$ and let $\delta=min\{\delta_1,\delta_2\}$

We get:

$|f(x)/g(x)-f(x_0)/g(x_0)|\leq 2|f(x)-f(x_0)|/|g(x_0)|+2|f(x_0)||g(x)-g(x_0)|/|g(x_0)|^2<|M|(|f(x)-f(x_0)|+|g(x)-g(x_0)|)<|M|\epsilon/2|M|+|M|\epsilon/2|M|<\epsilon$

Proved.