[Math] Prove that if $\{a_n\}$ converges to $l\in\mathbb{R}$, then $\{a_n^2\}$ converges to $l^2$

limitsreal-analysissequences-and-series

This has been answered before on this site but I don't really understand those answers enough so I am asking again.

Prove that if $\{a_n\}$ converges to $l\in\mathbb{R}$, then $\{a_n^2\}$ converges to $l^2$.

Pf.
Suppose $\{a_n\}$ converges to $l\in\mathbb{R}$.

This means $\forall\epsilon>0,\exists N_1>0, s.t,\forall n\in\mathbb{N},\text{ if } n>N_1,\text { then } |a_n-l|<\epsilon$

I want to show that $\forall\epsilon>0,\exists N_2>0, s.t,\forall n\in\mathbb{N},\text{ if } n>N_2,\text { then } |a_n^2-l^2|<\epsilon$

Note: $a_n^2$ is the entire sequence, squared, evidently the same as $(a_n)^2$.

Consider $|a_n^2-l^2| = |a_n-l||a_n+l|$.

If $n>N_1$, then $|a_n-l||a_n+l|<\epsilon|a_n+l|$.

How do I continue from here?

Best Answer

Same approach but slightly shorter.

Suppose $\lim_{n\to\infty}a_n=l$. Let $B=\sup\{\vert a_n+l\vert\}$ for all $n$.

Let $\epsilon>0$ and let $N>0$ such that if $n>N$ then

$$ \vert a_n-l\vert<\frac{\epsilon}{B}$$

Then

$$ \vert a_n-l\vert\cdot\vert a_n+l \vert<\frac{\epsilon}{B}\cdot B$$

$$ \vert a_n^2-l^2\vert<\epsilon$$