[Math] Prove that given any five integers, there will be three for which the sum of the squares of those integers is divisible by 3.

discrete mathematicspigeonhole-principle

Basically the question is asking us to prove that given any integers $$x_1,x_2,x_3,x_4,x_5$$ Prove that 3 of the integers from the set above, suppose $$x_a,x_b,x_c$$ satisfy this equation: $$x_a^2 + x_b^2 + x_c^2 = 3k$$ So I know I am suppose to use the pigeon hole principle to prove this. I know that if I have 5 pigeons and 2 holes then 1 hole will have 3 pigeons. But what I am confused about is how do you define the hole? Do I just say that the container has a property such that if 3 integers are in it then those 3 integers squared sum up to a multiple of 3?

Best Answer

Any square integer must be congruent to either 0 or 1 mod 3. So for each of the 5 squares, we put it into hole 0 if it is congruent to 0 and into hole 1 if it is congruent to 1. Then take three squares from the hole with at least 3 squares and add them together. You will get either: $0+0+0\equiv 0$ or $1+1+1\equiv0$ mod 3.

Related Question