[Math] Prove that G is a group under matrix multiplication.

abstract-algebragroup-theorymatricesproof-writing

Let G be the set of all $2×2$ invertible matrices whose columns add up to 1. So, G is the set of all matrices $A=\begin{bmatrix}a&c\\b&d\end{bmatrix}$ such that $a+b=1$ and $c+d=1$. Prove that G is a group under matrix multiplication.

So I know I have to prove closeness, associativity (which I've done), identity element, and being invertible everywhere, which I'm not sure how to use another matrix B to do so.

Best Answer

Let $S$ be a set of $2\times 2$ matrices defined by:

$$S \, = \, \left\{\begin{pmatrix} a & c \\ b & d\end{pmatrix} \; : \; a+b=1, \, c+d=1, \, ad\neq bc\right\}.$$

Then $A\in S$ is of the form

$$A = \begin{pmatrix} a & c\\ 1-a & 1-c \end{pmatrix}$$

where $a, c\in\mathbb{R}$ with $a\neq c$. Now take two matrices in $A$:

$$A = \begin{pmatrix} a & c \\ 1-a & 1-c \end{pmatrix}, \quad B = \begin{pmatrix} a' & c' \\ 1-a' & 1-c' \end{pmatrix}. $$

with $a, c, a', c' \in\mathbb{R}$ with $a\neq c, \, a'\neq c'$. For closure, we require $AB\in S$:

$$AB = \begin{pmatrix} a & c \\ 1-a & 1-a \end{pmatrix}\begin{pmatrix} a' & c' \\ 1-a' & 1-c' \end{pmatrix} \, =\, \begin{pmatrix} aa' +(1-a')c & ac' +(1-c')c \\ (1-a)a' + (1 - c) (1 - a') & (1-a)c' + (1 - c)(1-c') \end{pmatrix} $$

which after simplifying gives

$$AB = \begin{pmatrix} aa' +(1-a')c & ac' +(1-c')c \\ 1-[aa'+(1-a')c] & 1 - [ac' +(1-c')c] \end{pmatrix} $$

which is of the same form (elements in first column add to 1, as do the elements in the second column; elements in first row can't be equal since $a\neq c$) and $AB\in S$. Hence $S$ is closed under matrix multiplication. That should get you started.