[Math] Prove that $f(x,y)=xy$ is differentiable using the definition

analysisderivativesinequalitymultivariable-calculusreal-analysis

Let $f:\mathbb R^2\to \mathbb R$ defined by $f(x,y)=xy$. Prove $f$ is differentiable.

According to the definition I have to show this $$\frac{\|f((x_0,y_0)+(h_1,h_2)) – f(x_0,y_0)-T(h_1\space h_2)\|}{\|(h_1,h_2)\|}\to 0$$

But I got stuck in the proof.

\begin{align}
& \frac{\|f((x_0,y_0)+(h_1,h_2))-f(x_0,y_0)-T(h_1\space h_2)\|}{\|(h_1,h_2\|} \\[10pt]
= {} & \frac{\|(x_0+h_1)(y_0+h_2)-x_0y_0-(x,y)(h_1\space h_2)\|}{\sqrt{h_1^2+h_2^2}} \\[10pt]
\le {} &\frac{\|x_0h_2+y_0h_1+h_1h_2\|}{\sqrt{h_1^2+h_2^2}}+\frac{\|-(x,y)(h_1\space h_2)\|}{\sqrt{h_1^2+h_2^2}}
\end{align}
and I think I the first term after the inequality goes to zero, but what happen to the second term?

How can it goes to zero too?

Best Answer

Hint: $T (h_1 ,h_2) = \nabla f (x_0 , y_0)^T (h_1,h_2) = y_0 h_1 + x_0 h_2 $

Therefore

$$\frac{|f((x_0,y_0)+(h_1,h_2)) - f(x_0,y_0)-T(h_1\space h_2)|}{\|(h_1,h_2)\|}= \frac{ | h_1h_2 | }{\sqrt{h_1^2+h_2^2}} \leq |h_2| $$

Related Question