[Math] Prove that $f(x)=exp(-x-e^{-x})$ for $x\in \mathbb{R}$ is a p.d.f and find the c.d.f.

exponential functionintegrationprobabilityprobability distributions

Prove that $f(x)=exp(-x-e^{-x})$ for $x\in \mathbb{R}$ is a probability density function and find the cumulative density function.


I think that by proving that $f(x)$ is a pdf, it should be fairly straightforward to find the cdf (if this is not true, would like a hint). I want to focus on the first part.

I am using the following definition.

A continuous random variable X is a RV whose c.d.f. satisfied

$F_X(x)=\mathbb{P}(X\leq x)=\int_{-\infty}^x f_X(u) du$

where $f_X:\mathbb{R} \rightarrow \mathbb{R}$ is a fct s.t. (a)$f_X(u) \geq 0$, $ \forall u \in \mathbb{R}$ and (b) $\int_{-\infty}^{\infty}f_X(u)du=1$

$f_X$ is called the p.d.f. of X

So my approach is to basicaly prove that $f(x)$ satisfies conditions (a) and (b).

Condition (a) seems fairly easy.

$exp(-x-e^{-x})=e^{-x-e^{-x}}=(\frac{1}{e})^{x+\frac{1}{e^x}}=(\frac{1}{e})^{x}(\frac{1}{e})^{\frac{1}{e^x}}$

Since $e$ is a positive constant, the function is also positive for all $x\in \mathbb{R}$. My question is how to prove the second condition, i.e. prove that

$\int_{-\infty}^{\infty}(\frac{1}{e})^{u}(\frac{1}{e})^{\frac{1}{e^u}}du=1$

My attempt so far:

Let $x=e^{-u}$

$dx=-e^{-u} \rightarrow -dx=e^{-u}$

$\int_{-\infty}^{\infty}e^{-u-e^{-u}}du=\int_{-\infty}^{\infty}e^{-u}e^{-e^{-u}}du=\int_{-\infty}^{\infty}-e^{-x}dx=e^{-x}|^{\infty}_{-\infty}=e^{-e^{-u}}|^{\infty}_{-\infty}$

What should I do from here?

Best Answer

Hint:

$$ \frac{d}{dx} exp\left(-\mathrm{e}^{-x}\right) = exp\left(-x -\mathrm{e}^{-x}\right) $$