[Math] Prove that $A \subseteq B$ if and only if $A \cap \overline{B}=\emptyset.$

elementary-set-theory

Prove that $A \subseteq B$ if and only if $A \cap \overline{B}=\emptyset.$


Proof:

Since $A \cap \overline{B}$ implies that $x \in A$ but $x \notin B$, whilst $A \subseteq B$ implies that $x \in A$ and $x \in B$, we have a contradiction, since $x \in B$ and $x \notin B$. Thus, $A \cap \overline{B}=\emptyset.$


Is this sufficient? How else can this be proved?

Best Answer

Try mutual subset inclusion.

($\to$): Suppose $x\in A\subseteq B$. Then $x\in A\to x\in B$; that is, $x\not\in A\lor x\in B$. The negation of this is $x\in A\land x\not\in B$; that is, $x\not\in A\cap \overline{B}$.

The other direction is trivial since you are dealing with the empty set.

Related Question