Integration – Prove $\int_0^{\infty} \left(\sqrt{1+x^{4}}-x^{2}\right)\ dx=\frac{\Gamma^{2}\left(\frac{1}{4}\right)}{6\sqrt{\pi}}$

calculusdefinite integralsimproper-integralsintegration

I have in trouble for evaluating following integral

$$\int_0^{\infty} \left(\sqrt{1+x^{4}}-x^{2}\right)\ dx=\frac{\Gamma^{2}\left(\frac{1}{4}\right)}{6\sqrt{\pi}}$$

It seems really easy, but I don't know how to handle it at all.
(The results are well known, here I tried to evaluate it but I failed)

I tried to use the relation

$$\sqrt{1+x^{4}}-x^{2}=\frac{1}{\sqrt{1+x^{4}}+x^{2}}$$

but I couldn't find the desired results.

Best Answer

Let's apply the substitution $\sqrt{x^4+1}-x^2=\sqrt{t}$: $$x^2=\frac{1-t}{2\sqrt{t}},\quad dx=-\frac{\sqrt2}{8}t^{-5/4}(t+1)(1-t)^{-1/2}dt,$$ $$\int_0^\infty\left(\sqrt{x^4+1}-x^2\right)\,dx=\frac{\sqrt2}{8}\left(\int_0^1 t^{1/4}(1-t)^{-1/2}\,dt+\int_0^1 t^{-3/4}(1-t)^{-1/2}\,dt\right)=$$ $$=\frac{\sqrt2}{8}\left(\mathrm{B}\left(\frac54,\frac12\right)+\mathrm{B}\left(\frac14,\frac12\right)\right)=\frac{\Gamma^2(\frac14)}{6\sqrt{\pi}}.$$