[Math] Prove for each $a ∈ G, aHa^{-1}$ is a subgroup of G.

abstract-algebra

Question:

Let $H$ be a subgroup of $G$. For any $a \in G$, let $aHa^{-1} = \{axa^{-1} : x \in H\}$; $aHa^{-1}$ is called a conjugate of $H$. Prove: For each $a \in G$, $aHa^{-1}$ is a subgroup of $G$.

I know in order to prove something is a subgroup it needs to be nonempty, closed under operation, contains it's identity, and inverse.

I do believe to prove H contains it's inverse it goes as follows:

$aea^{-1} = aa^{-1}e = e$ for any $a \in G$. Therefore $e \in H$.

but after that I am at a loss.

Best Answer

Let $\alpha, \beta\in aHa^{-1}$, then $\exists x,y \in H$ such that $\alpha=axa^{-1}$ and $\beta=aya^{-1}$. Note that $aHa^{-1}\neq \emptyset$ because $e\in H$ (identity oh $H$), then $e=aa^{-1}=aea^{-1}\in aHa^{-1}$.

Then, $$\alpha \beta^{-1}=(axa^{-1})(aya^{-1})^{-1}=(axa^{-1})((a^{-1})^{-1}y^{-1}a^{-1})= $$ $$=(axa^{-1})(ay^{-1}a^{-1})=ax(a^{-1}a)y^{-1}a^{-1} =axy^{-1}a^{-1}=a(xy^{-1})a^{-1}\in aHa^{-1},$$ because $x,y\in H<G\Rightarrow xy^{-1}\in H<G$.

Then, $aHa^{-1}<G$, $\forall a\in H$.

Note: $H<G$ means that $H$ is a subgroup of $G$.